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A novel VPS13B mutation in two brothers with Cohen
syndrome, cutis verticis gyrata and sensorineural
deafness
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We have earlier described a syndrome characterized by microcephaly, cutis verticis gyrata, retinitis
pigmentosa, cataracts, hearing loss and mental retardation (Mendelian inheritance in man (MIM) no:
605685) in two brothers from a non-consanguineous Lebanese family. In view of the rarity of the disorder
and the high rate of inbreeding in the Lebanese population, we assumed an autosomal recessive trait
inherited from a common ancestor. A genomewide scan was performed. The single locus on the long arm
of chromosome 8 that showed homozygosity by descent comprised the gene responsible for Cohen
syndrome (CS), VPS13B. We then sequenced VPS13B in the patients and found a homozygous splice site
mutation. Several possible explanations for the overlap between CS and the clinical features observed in
our patients are discussed. Our data highlight the potential of high-resolution homozygosity mapping in
small populations with a high rate of inbreeding.
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Introduction
Mental retardation affects 1–3% of the general popula-

tion,1 but only 3–7% can be recognized as defined

syndromes. In as many as 30–50%, the cause is unknown.2

In 2001, we described a Lebanese family with syndromic

mental retardation in two brothers. They exhibited

microcephaly, primary cutis verticis gyrata of the scalp,

prominent supraorbital ridges, coarse facial features (large

nose, hypertelorism), retinitis pigmentosa, cataracts,

sensorineural hearing loss and kyphoscoliosis in addition

to mental retardation.3 As this combination of symptoms

did not fit any known clinical entity, it was classified as a

new syndrome (online Mendelian inheritance in man

(OMIM) 605685) with either autosomal recessive or

X-linked inheritance. Although parental consanguinity

was not reported to be present in the family, we conducted

a genomewide homozygosity mapping approach that

identified a homozygous region on chromosome 8 in

the patients. Within this candidate interval, we found a

splice site mutation in VPS13B (OMIM 607817), the

gene responsible for CS OMIM 216550) that results in a

frameshift.
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Methods
Patients

Clinical symptoms of the patients have been described

earlier.3 DNA samples were available from the two affected

brothers, one healthy brother, two healthy sisters and the

mother (Figure 1a). RNA from whole blood was isolated

using the PAXgene system (PreAnalytiX, Heidelberg,

Germany). Written informed consent was obtained. The

study was approved by the institutional review board of the

Ethics Committee, University Hospital of Cologne.

Linkage analysis

Assuming autosomal recessive inheritance, we performed

genomewide homozygosity mapping using the Affymetrix

GeneChip Human Mapping 10K Array, version 2.0

(Affymetrix, Santa Clara, CA, USA). GRR4 and PedCheck5

were used to verify relationships and to identify Mendelian

errors. Non-parametric linkage analysis was carried out

with MERLIN.6 Parametric linkage and haplotype analysis

were performed using a modified version of the programs

GENEHUNTER 2.17,8 and ALLEGRO,9 assuming autosomal

recessive inheritance. All data handling was performed

using the graphical user interface ALOHOMORA.10

Graphic output of haplotypes was generated with

HaploPainter.11

Mutation analysis

Direct sequencing of the 62 exons of VPS13B was

conducted on genomic DNA. DNA numbering of muta-

tions is based on the cDNA sequence of VPS13B (GenBank

accession number: NM_017890). In all, 50 healthy control

individuals (31 Lebanese and 19 Germans) were screened

for the mutation identified. Reverse transcription from

total RNA from whole blood was carried out with

RevertAidt H Minus M-MuLV Reverse Transcriptase

(Fermentas), followed by cDNA-specific PCR amplification

and direct sequencing using primers 50-CACTGTGCA

CAAGTCAGTAG-30 (forward, exon 50) and 50-CATGAT

GAATTGAGCACTCG-30 (reverse, exon 54). The connexin

gene, GJB2, was also sequenced in one of the patients.

Results
If the parents are considered non-consanguineous, more

than 20 chromosomal regions show segregation with the

phenotype, each obtaining a combined maximum

parametric logarithm of the odds (LOD) score of B1

(Figure 1b). In contrast, calculation under the hypothesis

of parental consanguinity resulted in a single 7.24-Mb

region on chromosome 8q22.1–q22.2, flanked by

the single-nucleotide polymorphisms (SNPs) rs728185

and rs1954695, that shows homozygosity by descent

Figure 1 (a) Pedigree of the family investigated. (b) Graphical view of the LOD score calculation of genomewide SNP mapping under the
assumption that the parents are unrelated (multiple peaks with low LOD values) and (c) that the parents are consanguineous. The resulting candidate
locus on chromosome 8q22.1–q22.2 is indicated (arrow).

VPS13B in cutis gyrata: mental retardation
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(HBD) in both patients (LOD score of 2; Figure 1c). This

region comprises 46 genes, including the gene for CS,

VPS13B (earlier designated COH1). Molecular analysis of the

complete coding region of VPS13B identified the c.9406-

1G4C mutation in homozygous state (Figure 2b). This

variant affects the invariant splice acceptor site of intron 51

in both patients. RT–PCR for the corresponding gene

segment showed the activation of a cryptic acceptor splice

site in exon 52, resulting in a 16-bp deletion in the mRNA

(Figure 2d) predicted to lead to a frameshift and subsequent

truncation of the protein to 3150 residues, p.Y3136TfsX16

(wild type: 4022 residues), or an unstable mRNA molecule

that is rapidly degraded. The mutation was absent in 50

unrelated control individuals. Consistent with our mapping

data, the mother and one sister are both heterozygous

carriers of the mutation. We also screened the Connexin-26

gene, GJB2, the most prevalent cause of non-syndromic

deafness, and did not identify any mutation.

Discussion
We identified a novel VPS13B mutation in two brothers

with symptoms compatible with CS, or at least Cohen-like

syndrome, when applying the diagnostic criteria proposed

by Chandler et al12 or Kolehmainen et al,13 respectively.

Both present with two additional features, cutis verticis

gyrata and sensorineural deafness, that have never been

reported in CS patients. These unusual features may reflect

a variant of CS, a syndrome known to be clinically highly

heterogeneous. Also, several other explanations may

underlie these additional features.

The mutation we identified, c.9406–1G4C, affects the

same nucleotide as an earlier described mutation associated

with CS, c.9406–1G4T, but leads to a different nucleotide

change. Both nucleotides, C and T, at this position lead to

the same abnormal splicing and the activation of a cryptic

splice site near the 50 end of exon 52 with a consecutive

16-bp frameshift deletion in the VPS13B mRNA.14

Interestingly, acceptor site prediction with NNSPLICE 0.9

(http://www.fruitfly.org/seq_tools/splice.html) for our

mutation resulted in a much lower score for the cryptic

AG (AG denotes the two nucleotides of the acceptor splice

site) motif at c.9420_9421 (0.48) compared with c.9406–

1G4T (0.71). However, we observed the same splicing

pattern in total blood from our patients as was described

for c.9406–1G4T.14 It is possible, but unlikely, that our

mutation leads to a different splicing pattern or ratio

between splice isoforms in other tissues that could explain

the additional clinical features.

An alternative explanation for these features is an

overlap of several genetic conditions. Consanguineous

Figure 2 (a) Heterozygous state for the c.9406–1G4C mutation in VPS13B as found in the mother and one sister (genomic sequence). The
mutation affects the invariant acceptor splice site (AS) of intron 51. AS’ denotes the cryptic exonic splice site at position c.9420_9421 in exon 52.
(b) Homozygosity for c.9406–1G4C in one of the index patients (genomic sequence). (c) RT–PCR analysis of VPS13B exons 50–54, wildtype. The
16-bp stretch deleted in the patients’ RNA (d) due to the c.9406–1G4C mutation and consecutive splicing at AS’ is boxed.
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1078

European Journal of Human Genetics

http://www.fruitfly.org/seq_tools/splice.html


marriage represents a major risk for rare autosomal

recessive diseases in offspring as it increases the frequency

of homozygous genotypes. With an estimated 4–5 hetero-

zygous recessive mutations per individual,15 offspring

may become homozygous for mutations in unlinked genes

– which can mimic a single syndromic disorder.16,17 Thus,

autosomal recessive hearing loss, as well as cutis verticis

gyrata, could be caused by mutations in a different gene

and locus. However, our linkage data do not support the

presence of another causative homozygous locus. It is also

possible that another mutated gene or modifier locus

segregates in cis with the CS mutation and is responsible

for deafness and cutis gyrata. On the basis of current

knowledge, no deafness gene or locus has been mapped to

the 8q22 homozygous region and the closest deafness

gene, TFCP2L3, maps B1Mb telomeric to its distal

boundary. Given the high prevalence of hearing impair-

ment and the multitude of genetic and environmental

causes, this sensory deficit could well be because of variants

or mutations in one or several additonal gene(s). Two out

of the 420 chromosomal regions that segregate with the

phenotype under the assumption of non-consanguinity

contain known recessive deafness genes, CDH23 and

MYO7A. As biallelic CDH23 or MYO7A mutations result

in profound congenital deafness, and hearing impairment

became evident in the third decade in our patients, a

causative role of these genes is unlikely. The frequent

association of cutis verticis gyrata with mental retarda-

tion18,19 suggests that it may be a rare manifestation of CS.

Consequently, VPS13B mutations should be considered if

cutis verticis gyrata is observed in combination with

mental retardation.

The homozygosity mapping approach conducted here

can serve as a paradigm for linkage approaches in rare

recessive phenotypes such as CS. For these diseases, the

prevalence of homozygosity for the causative mutations

can also be high in families without documented con-

sanguinity, owing to a distant common ancestor. This is of

particular relevance in small populations with a high rate

of inbreeding.
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