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Genetic and environmental risk factors and their interactions contribute to the development of complex
diseases. In this review, we discuss methodological issues involved in investigating gene–environment
(G� E) interactions in genetic–epidemiological studies of complex diseases and their potential relevance
for clinical application. Although there are some important examples of interactions and applications, the
widespread use of the knowledge about G� E interaction for targeted intervention or personalized
treatment (pharmacogenetics) is still beyond current means. This is due to the fact that convincing
evidence and high predictive or discriminative power are necessary conditions for usefulness in clinical
practice. We attempt to clarify conceptual differences of the term ‘interaction’ in the statistical and
biological sciences, since precise definitions are important for the interpretation of results. We argue that
the investigation of G� E interactions is more rewarding for the detailed characterization of identified
disease genes (ie at advanced stages of genetic research) and the stratified analysis of environmental
effects by genotype or vice versa. Advantages and disadvantages of different epidemiological study designs
are given and sample size requirements are exemplified. These issues as well as a critical appraisal of
common methodological concerns are finally discussed.
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Introduction
It is generally accepted that both genetic and environ-

mental factors contribute to the development of complex

diseases. Thus, gene–environment (G�E) interaction is a

hot topic in human genetics and there are great expecta-

tions for potential applications. Personalized medicine or

individualized lifestyle recommendations based on the

genetic profile are being promoted as the future of public

health. Substantial funds devoted to study the genetics of

human diseases are justified by these expectations. How-

ever, up to now, there are only a few replicated, biologically

plausible and methodologically sound examples of G� E

interactions with a proven clinical relevance1,2 and even

less are used in daily clinical routines.3 The extent to which

G� E interactions are of general importance for the

development of common, complex diseases is currently

unknown, even though important examples exist. Formal

genetic evidence for G�E interaction can consist of the

observation that a certain exposure has different effects in
Received 6 February 2007; revised 20 February 2008; accepted 6 May

2008; published online 4 June 2008

*Correspondence: Dr A Dempfle, Institute of Medical Biometry and

Epidemiology, Philipps University Marburg, Bunsenstr. 3, Marburg

35037, Germany.

Tel: þ 49 6421 28 66504; Fax: þ49 6421 28 68921;

E-mail: dempfle@med.uni-marburg.de
3Current address: Institute of Medical Informatics, Biometry and

Epidemiology, University of Duisburg-Essen, Essen, Germany.

European Journal of Human Genetics (2008) 16, 1164–1172
& 2008 Macmillan Publishers Limited All rights reserved 1018-4813/08 $32.00

www.nature.com/ejhg

http://dx.doi.org/10.1038/ejhg.2008.106
mailto:dempfle@med.uni-marburg.de
http://www.nature.com/ejhg


different populations or ethnic groups or in people with

different genetically determined phenotypes. One example

is exposure to sunlight that raises the risk of melanoma

much more in fair-skinned than in dark-skinned people,

that is there is an interaction between ultraviolet light and

skin pigmentation.4

Constant advances in genotyping technology now

enable genome-wide association studies and researchers

are tempted to investigate their data as comprehensively as

possible, including G�E interactions. In this review, we

present the perspectives for clinical applications, clarify

definitions, discuss the range of application, and the design

and required sample size of epidemiological G�E studies.

We conclude with some cautionary remarks on methodo-

logical challenges of such studies.

Potential applications of G� E interactions in public
health and clinical care
The most important area of application for G�E inter-

actions is personalized medicine, both in prevention and

treatment (pharmacogenetics). Regarding the first, perso-

nalized prevention recommendations could be developed

if the effects of an environmental risk factor strongly

depend on an identified genetic polymorphism. In this

sense, the assessment of the effects of genotypes in

different exposure strata or vice versa of environmental

exposures on disease risk in different genotype groups

might be useful, even without a priori knowledge of the

precise biological mechanisms underlying the statistical

interaction. However, even the existence of a strong

interaction does not imply that high-risk individuals can

be easily identified for a targeted intervention, as usually

many other factors will be important in disease develop-

ment. This is for example the case for most so-called

‘sporadic cancers’ where presumably a strong stochastic

element is involved in carcinogenesis, making accurate

prediction of individual disease risk almost impossible.2

Moreover, most study designs will not yield unbiased

estimates of effects – the influence of the investigated risk

factors is often overestimated.5,6 From a public health

perspective, the idea of personalized recommendations and

targeted intervention has been questioned, as the overall

benefit of small changes at a population level may be larger

than that of large changes in high-risk individuals.7

Whenever the interaction results only in a stronger or

smaller detrimental effect of an exposure in the different

genotype groups, all individuals may benefit from avoiding

the exposure if the exposure is causally related to the

disease. It is this very situation in which general recom-

mendations are advisable, for example like those regarding

exercise, smoking and diet.8 Personalized recommenda-

tions, however, may be considered reasonable for cases

when an exposure has a null or negative effect in one

genotype group and a protective effect in another genotype

group.

Also the second area of application, pharmacogenetics,9

relies on the existence of such strong G�E interactions. It

is implicit that individuals with different genotypes will

benefit from different medication in a predictable manner.3

Although it is plausible that the different reactions of

patients to drugs may depend on their individual genetic

‘make-up’, the systematic study of such interactions is still

in its beginnings. A prerequisite for widespread use in

clinical practice is that the genetic variant is a sufficiently

strong predictor of harm or benefit.5 One example is

anticoagulant treatment, where it is known that warfarin

clearance depends on the genotype of the metabolizing

enzyme cytochrome P-450 2C9 (CYP2C9). About one-third

of Caucasian patients possess one of the polymorphisms

that require a reduced maintenance dose of warfarin to

avoid adverse side effects. Prior to integration of genetic

information in clinical practice randomized, controlled

clinical trials will be required to demonstrate the benefits

of including CYP2C9 genotype in warfarin dosing (to-

gether with other covariates) compared to traditional dose-

finding methods.10,11 For a more detailed view of the

potential impact of pharmacogenetics on public health we

refer to a review by Goldstein et al.12

Definition and meaning of interaction
While reviewing the data, one will often notice that both

different connotations and different concepts of the term

interaction are used by statisticians, clinicians, biologists

and geneticists.13,14 Frequently, a precise definition is

completely omitted, which may lead to some confusion

and controversy between scientists of different disciplines.

Quite commonly in general contexts, ‘G�E interaction’ is

used in a very loose sense, meaning some sort of interplay

between genetic and environmental factors. However, a

specific mode of joint action or a certain relationship

between statistical risks is not implied in many cases.

Sometimes it is even used to express that several factors

contribute to disease risk, without excluding the possibility

of complete independence. In these cases using for

example the term ‘joint action’ would be preferable. If

‘interaction’ is used in a narrower sense, it can refer to a

biological (causal) or statistical level and we will define it

here, introducing commonly used statistical terminology

and finally distinguishing it from confounding.

Biological interaction is defined as the joint effect of two

factors that act together in a direct physical or chemical

reaction and the coparticipation of two or more factors in

the same causal mechanism of disease development.15

Further notations are causal or mechanical interaction.

Examples of biological interaction are the direct reaction of

a certain exposure with, for example, an enzyme whose
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detoxification ability depends on the genotype of a certain

gene. A good overview of possible causal relationships and

interaction mechanisms is given by Ottman.16 Such

etiological mechanisms have to be explored by functional

studies.

On the other hand, there is the definition of statistical

interaction, which does not imply any inference about

particular biological modes of action. Statistical interaction

(or heterogeneity of effects) is usually defined as ‘departure

from additivity of effects on a specific outcome scale’.14

If only one factor is present, its effect on the risk of disease

is called main effect. In the case where two or more risk

factors are present, the marginal effect of a risk factor is its

average effect across all levels of the other risk factors. The

risk factors are said to interact, if the effect of one risk

factor depends on the level of the other risk factor (Table 1).

Several equivalent terms denoting statistical interaction

exist, such as non-additivity, effect measure modification

or heterogeneity of effects. The joint effect of two risk

factors refers to both their marginal effects and their

interaction effect. The joint effect can vary from less than

additive (subadditive) to more than multiplicative (supra-

multiplicative) of the individual marginal effects. Theo-

retical models for such interaction relationships have been

explored especially for cancer development, where

carcinogens act at different stages.17

Interactions are sometimes divided into removable and

nonremovable:18 if a monotone transformation (eg taking

logarithms or square roots of quantitative phenotypes)

exists that removes the interaction19 (Figure 1), it is called

removable. This implies that there is an additive relation-

ship between the variables, just on a different scale.

Therefore, nonremovable interactions are usually of greater

interest. To complete the terminology, nonremovable

interaction effects are also called crossover effects20 or

qualitative interactions (as opposed to quantitative, ie

removable interactions).

Furthermore, it is necessary to distinguish between

interaction and confounding of environmental and

genetic factors. Confounding refers to a mixing of extra-

neous effects with the effect of interest,14 for example a

(true but unmeasured) risk factor of disease that is

correlated with the investigated risk factor and results in

a noncausative association. In the context of interactions,

this could primarily be a correlation between the genetic

and environmental risk factors, which could be misinter-

preted as an interaction if the statistical model used does

not account for the correlation but treats them as

independent. Such a gene–environment correlation can

occur in samples with latent population substructure (eg

unintentionally including groups of different ethnicity)

where both risk allele frequencies and exposure frequencies

vary between subpopulations. It can also result from the

influence of genes on behavior like alcohol consumption

or food and satiety responsiveness that in turn are related

to diseases such as coronary heart disease or obesity. In

many other contexts confounding would not be a serious

concern, as genotype and environmental risk factors will

usually be independent – genotypes are fixed throughout

life and are thus not influenced by or associated with

environmental exposures (cf. concept of ‘Mendelian

randomization’21,22). At the data level, confounding and

interaction may lead to similar patterns, especially in

partial collection designs such as the case-only design. An

identified interaction should therefore be carefully inter-

preted to consider whether confounding could explain part

of the observed effect.

When should G� E interactions be investigated?
The analysis of G�E interactions in genetic epidemiology

can be done at both different time points during the

Table 1 Example of additive and multiplicative models of
relative risks for an environmental and a genetic risk factor

Environmental risk factor Genetic risk factor

Additive model Multiplicative model

Absent Present Absent Present

Absent 1 2 1 2
Present 1.5 2.5 1.5 3

Figure 1 Examples of main and interaction effects. Phenotypic
values depending on genotype G (two groups, eg under a dominant
genetic model) and exposure E (also two groups, exposed (dotted
line) and unexposed (solid line)). (a) Neither G nor E have a main
effect and there is no interaction; (b) G has a main effect, E has no
main effect, no interaction; (c) E has a main effect, G has no main
effect, no interaction; (d) both G and E have main effects, no
interaction; (e) G and E have main effects and there is an interaction
(which could be removed by changing the phenotype scale, eg
to a logarithmic scale); (f) G and E have main effects and there
is an interaction (which cannot be removed by any monotone
transformation).
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research process and with varying scopes. The relevant

research questions that could be addressed by a G�E

interaction study include the identification of new disease

genes, the characterization of gene effects, the clinical

relevance of a G�E interaction and the public health

impact of it.

In the phase of identification of genetic risk factors,

accounting for a G�E interaction might increase the

power to detect genes with small marginal effects,23–25

especially if the effect of a gene is only relevant in an

etiological subgroup of patients, defined by a certain

exposure. Here, the interaction is not of specific interest

per se. Especially for high-throughput genotyping of

polymorphisms in hundreds of candidate genes or

genome-wide association studies with several hundred

thousands of polymorphisms, the inclusion and testing

of interactions greatly increase the number of statistical

tests and thus the need to correct for multiple testing. Joint

tests of marginal and interaction effects25 may provide

power over a wide range of unknown true situations.

However, in the absence of very strong interaction, tests for

marginal gene effects are still the most powerful to identify

a disease-related gene.

Alternatively, a G� E study can be part of the detailed

characterization of gene effects for genes that have already

been shown to be involved in disease etiology but whose

effect may vary across different environmental strata. In

this case, the interaction itself is of interest and the aim of

an initial study may be primarily hypothesis generating

(exploratory), possibly investigating several environmental

factors or different polymorphisms within one gene to

provide effect size estimates. The next step would be to

establish clinical relevance of a detected G�E interaction,

which involves confirmatory testing of one specific a priori

hypothesis within the clinical population and under the

circumstances proposed for later application. It also

includes the estimation of the strength of the interaction

(effect size, eg odds ratio). Ideally, such investigations will

be part of a randomized controlled (phase III) trial. Finally,

assessments of the public health impact of an established

G�E interaction depend on the strength of the interac-

tion, exposure frequency and allele frequencies. More

importantly, however, the ascertainment strategy and the

study design will require careful considerations to enable

generalizations of the study results.

Study designs for G� E
Common family- and population-based designs for asso-

ciation studies can be extended for G�E interaction.

Table 2 lists different designs with their respective

advantages and disadvantages and research situations in

which such a design would be suitable. Family-based

designs protect against bias due to population stratification

with both differential exposure and genotype distribution

in subgroups. In population-based designs, data on a

quantitative trait or a disease phenotype are collected from

unrelated individuals, either prospectively (cohort) or

retrospectively (case–control). If a large prospective cohort

exists, a nested case–control study can reduce selection

and possibly stratification biases and be a good compro-

mise regarding cost and efficiency.29 For the relative merits

of cohort and case–control designs see also the discussion

started by Clayton and McKeigue,21 who argue that case–

control studies are more feasible and cost efficient than

cohort studies for modest disease risks and that exposure

misclassification bias is not a serious threat in the case of

G� E interactions. Others however stress this possible bias

and emphasize the merit of cohorts in studying multiple

end points and especially different diseases in one

sample.30–33

If the interest is limited to G�E interaction, the special

‘case-only’ design exists that has the practical advantage

that no controls need to be collected.34 This design is based

on the assumption that genotype and environmental

exposure are independent in the population that the case

sample is drawn from, so that exposure should not differ

among subgroups defined by genotype. Since, in the

presence of a G�E interaction, specific combinations of

genotypes and exposure lead to increased risk of disease

and thus are more prevalent among cases, differences in

exposure will be observable between genotype groups in

cases. Because of the independence assumption, the case-

only design is more efficient than the traditional case–

control design, but this assumption is not assessable in the

case sample alone. Therefore, the design is prone to bias

and confounding, especially if there is exposure misclassi-

fication (keeping in mind that especially lifetime environ-

mental exposures are not as accurately measurable as

genotypes).35–38 Another drawback is that although

estimation of the G� E interaction is possible, the estima-

tion of the joint effect of exposure and genotype is

impossible39 even though the latter usually is of greater

importance for the public health aspect of a G�E

investigation. As a consequence, the practical applicability

of this design is limited and it is rarely applied. The case–

control design is better suitable to address the relevant

research questions,40 and if one is willing to make the

assumption of gene–environment independence, analysis

methods exist that also leverage this.39,41

Two special, nonstandard applications of G�E inter-

actions occur in infectious disease and pharmacogenetic

studies. In infectious diseases, only individuals exposed to

the infectious agent can contract the disease, thus the

environmental factor is a necessary causal factor. Genes

may modify the risk of infection (or disease severity) for

those exposed.42–44 Examples are the CCR5 gene for HIV

infection,45 malaria and heterozygosity for sickle cell

anemia46 or variant Creutzfeld–Jakob disease and a
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polymorphism in codon 129 of the prion protein gene

PRNP.47 In these examples, individuals with certain

genotypes have a much lower risk for infection or

progression to serious disease. Infectious disease studies

usually include only individuals at high risk of infection

(assumed to be exposed). Here, the aim is an investigation

of potential differences in disease prevalence between

genotype groups similar to the usual genetic association

or linkage studies without explicit consideration of G�E

interaction in the statistical analysis. Such differences can

then be interpreted as G�E interactions, since the

genotype alone cannot lead to an infectious disease.

Similarly, some pharmacogenetic studies for licensed drugs

aim at identifying individuals at risk for serious side effects

or increased efficacy by exclusively including drug-treated

patients. In this design it is impossible to distinguish

between genetic effects and G�E interaction. More

suitable is a design that includes pharmacogenetic aspects

in randomized clinical trials by giving placebo or active

drug stratified according to genotype.48,49

Sample size and power
Depending on the strength of the interaction and exposure

and allele frequencies, sample size requirements to detect

a statistically significant G�E interaction may be

substantially larger than the sample sizes to identify a G

Table 2 Study designs for genetic association studies that can include G� E interactions with their main advantages and
disadvantages and the situations in which these designs are most suitable

Study design Main advantage Disadvantage
In which situation is this
design most suitable?

Family-based designs
Trio design:26,27 Case
and both parents,
evaluate transmission
disequilibrium,
depending on exposure

Protects against
confounding due to
population stratification

High ascertainment costs;
often impossible for late
onset diseases

Early onset diseases when
population stratification is
a concern

Sib design:27,28 case and
unaffected siblings

Protects against population
stratification

Potentially difficult to
recruit enough suitable
families

Late onset diseases when
population stratification is
a concern

Population-based designs
Cohort: compare disease
frequency between
genotype-exposure
groups

Reduces selection and
stratification bias
compared to case–control
design; prospective
measurement of exposure

Expensive and time
consuming; investigation
of very rare diseases may
be impossible with realistic
sample sizes

Very reliable results due to
low risk of biases, therefore
suitable for confirmatory
studies; useful for common
diseases; can use existing
cohorts with additional
DNA collection

Case–control
(retrospective): compare
exposure rate and
genotype frequencies
between cases and
controls

Simple, relatively
inexpensive and less time
consuming compared to
cohort studies

Possible stratification bias
due to population
stratification. Higher risk of
measurement error in
exposure

Only reasonable
population-based design
for very rare diseases; very
suitable for first exploratory
studies

Case-control (nested,
prospective)29

Less expensive than full
cohort design, reduced
biases compared to
retrospective case-control
design

For rare or common
diseases in existing
cohorts; confirmatory
studies

Case-only: evaluate
differences in exposure
between genotype
groups in cases

Simple, relatively
inexpensive and less time
consuming compared to
cohort studies; no controls
needed; high power for
G� E interaction test

Assumption of
independence of G and E
not assessable in the case-
only sample, therefore
prone to bias and
confounding; joint effect of
G and E cannot be
estimated

Fast, uncomplicated
exploratory studies, results
need to be confirmed with
other study designs

Clinical trial,
randomization stratified
by genotype

Gives reliable results of
clinical relevance of a
presumed gene-by-drug
interaction

Increased sample size and
higher cost over traditional
clinical trial

If preliminary studies
suggest differential drug
effects by genotype; basis
for personalized medicine

Exposed-only for
infectious diseases

No need to include a
presumably unexposed
group

Infectious disease genetics
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or E marginal effect. Some illustrative examples for

association studies of a candidate gene are shown in

Figure 2, which give the required samples sizes for four

different study designs (case–control, trio, case-only and

cohort) for varying effect sizes of the G�E interaction.

Only for very weak marginal effects (OR¼1.2, a)

and at least moderate interactions (OR41.5), the interac-

tion is detectable with a smaller sample size than the

marginal effect. But even for slightly larger marginal effects

(OR¼1.5, b) and weak to moderate interactions

(ORo2), the sample size required to detect the interaction

can be several fold higher than that required for

detecting the marginal genetic effect. These examples are

based on a level of significance (0.01) that might

be used in a confirmatory study for testing one well-

defined a priori hypothesis (eg one polymorphism within

one gene). Sample sizes would be much higher for

(exploratory) studies such as genome-wide association

scans with hundreds of thousands of markers, as the

correction for multiple testing requires much smaller levels

of significance and thus much larger samples. In addition,

these studies rely on linkage disequilibrium between the

genotyped markers and potentially untyped disease alleles,

and such indirect association studies may need much

larger sample sizes.50 Especially for G�E interactions that

might realistically be even smaller, large cohorts such as

BioBank UK (planned with 500000 individuals over 10

years33), EPIC51 and the Multi-ethnic Cohort52 will be

necessary. Although a sample size of 500 000 might be

useful for common diseases such as type II diabetes, it will

still be insufficient for rarer diseases with prevalence less

than approximately 1%, for which case–control studies

might be the only feasible approach.21

Note that sample size and power calculations are

also possible for other study designs, for example for

association studies of quantitative traits,53 categorical or

continuous exposure variables54 as well as for pharmaco-

genetic study designs.55–57 Freely available software

programs such as Power,58 Quanto59 or a Stata program

by Saunders et al60 may be used if required.
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Figure 2 Sample size requirements for 80% power to detect a gene–environment (G� E ) interaction for different study designs depending on the
strength of the interaction. Sample sizes for case–control, case–parent trio, and case-only designs were calculated using Quanto59 (http://
hydra.usc.edu/gxe), assuming an analysis by (conditional) logistic regression. For the cohort design, sample sizes are estimated using Power58 (http://
dcegqa.cancer.gov/bb/tools/power), which is based on a prospective binary response model. Shown are the number of individuals required to detect
a significant G� E interaction effect at a¼0.01 with a power of 80%. Solid lines represent the case–control design, dotted lines the trio design, dashed
line the case-only design and dotted-dashed lines the cohort design. The horizontal solid line represents the sample size required for 80% power to
detect a genetic main effect using a case–control design. The interaction odds ratio was varied between 1.25 and 3 whereas the main effects of the
genetic and environmental risk factors were 1.2 (a) and 1.5 (b). The disease model was defined by a recessive disease allele with frequency 0.3. The
environmental risk factor had a prevalence of 30%. The baseline risk of the disease was 10%. The samples sizes to detect the genetic main effect, which
were constant in the two scenarios, were 43 045, 16 196 and 19860 in (a) for the cohort, case–control and trio design, and 7712, 3070 and 3423 in
(b), respectively. For a dominant disease allele, similar relations between required sample sizes are observed for the different designs.
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Methodological challenges and perspectives
In summary, the methodological requirements for a G�E

interaction study are greatly driven by the research

question. We thus conclude by addressing five common

caveats that need to be considered: the study aims, the

conduct of a study, reporting and interpretation of results,

extending inferences and clinical relevance.

First, one should distinguish between primarily explora-

tory (ie hypothesis-generating) or confirmatory (hypo-

thesis testing) study aims. In our opinion, genome-wide

association studies and small initial studies can only be

considered exploratory. The latter will often be performed,

for example because of difficult or time-consuming

phenotyping, limited availability of the required biological

material (eg tissue samples) and financial constraints. Both

approaches are important and valid first steps in research

but their exploratory nature has to be kept in mind.

Therefore, such smaller studies will be valuable for

generating hypotheses that should then be tested for

confirmation in adequately powered, presumably larger

studies. On the other hand, inadequate sample sizes lead to

underpowered studies that give rise to both false-negative

and false-positive findings especially at the hypothesis-

generating stage. Biological relationships cannot be

inferred from genetic–epidemiological studies, and further

functional experiments are necessary for this.

Second, a well-designed confirmatory study of G�E

interaction should be based on a justifiable a priori

hypothesis of an interaction between a plausible or

established gene with known function and a known

environmental risk factor with some link to gene function,

for which a reasonable biological interaction mechanism

exists. Only prespecified (prior to data collection) hypoth-

eses and statistical tests can be interpreted as confirmatory.

Ideally, there is evidence from formal genetic studies (eg

twin studies or segregation analyses) of an interaction

between the exposure and genetic factors. Next, an

appropriate study design (see above) must be chosen and

a sufficient sample size needs to be pheno- and genotyped.

Then, an adequate statistical analysis is needed (including

a multiple comparison procedure for control of the type I

error if more than one statistical test is conducted).

Third, reporting and interpretation of detected G�E

interactions should be faithful and balanced. Reporting

should center on what range of true effects would be

compatible with the observed effects (using confidence

intervals of effect estimates) and it should be discussed

whether these could be of a clinically relevant size. By

contrast, less emphasis should be on the results of

significance tests (P-values) as these will be misleading if

the reader is unaware of the multiple tests performed. To

avoid publication bias, all test results (or at least the

number of tests performed) must be reported, not only

interactions that are nominally significant (eg at a 5%

level). Overreporting and overinterpretation of results will

lead to inconsistent and inconclusive results.2,61 And even

in case of careful descriptions, effect estimates in initial

reports tend to be biased5,6 and may vary between different

populations with different allele and exposure frequencies.

Fourth, if some evidence for a G�E interaction is

observed, its biological plausibility should be critically

discussed and potential confounders or intermediate path-

ways have to be explored. Here, one has to keep in mind

that conclusions dealing with a certain biological mecha-

nism cannot be confirmed or rejected by statistical argu-

ments based on epidemiological data alone.20 Only in light

of additional lines of evidence, such as functional experi-

ments, may the inferences toward causality be extended.

Finally, even though the potential clinical relevance or

impact of a reported G�E interaction may be discussed,

these implications should be evaluated in subsequent

studies designed for that special purpose. At this subse-

quent stage, the choice of the appropriate phenotype(s) is

of special importance and clinically relevant end points

and disease-related phenotypes, such as myocardial infarc-

tion, need to be studied before study results are embedded

in public health programs or exploited for personalized

medicine and individualized lifestyle recommendations.1,5

Note that physiological and biochemical phenotypes

(endophenotypes), such as lipid levels, IgE levels and so

on may be closer to the underlying gene action and may

thus be more appropriate for elucidating the biological

mechanism underlying an interaction. Such biomarkers

are, however, at most surrogate risk factors for a disease.

Clinical relevance by contrast requires that the predictive

or discriminative power of the genotype for the clinically

defined disease (eg death due to myocardial infarction) or

treatment success (eg extended survival time) has to be

sufficiently high. Predominantly, this will be the case for

strong qualitative interactions.

When these challenging requirements are fulfilled,

research on G�E interactions can yield valuable insights

into the etiology of complex diseases. Ultimately, this

knowledge may contribute to more effective strategies for

prevention and treatment.
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