Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Carbohydrates, insulin resistance and diabetes mellitus

Acute increases in serum colonic short-chain fatty acids elicited by inulin do not increase GLP-1 or PYY responses but may reduce ghrelin in lean and overweight humans

Abstract

Background:

Colonic fermentation of dietary fibre to short-chain fatty acids (SCFA) influences appetite hormone secretion in animals, but SCFA production is excessive in obese animals. This suggests there may be resistance to the effect of SCFA on appetite hormones in obesity.

Objectives:

To determine the effects of inulin (IN) and resistant starch (RS) on postprandial SCFA, and gut hormone (glucagon-like peptide (GLP-1), peptide–tyrosine–tyrosine (PYY) and ghrelin) responses in healthy overweight/obese (OWO) vs lean (LN) humans.

Subjects/Methods:

Overnight-fasted participants (13 OWO and 12 LN) consumed 300 ml water containing 75 g glucose (GLU) as control or 75 g GLU plus 24 g IN, or 28.2 g RS using a randomised, single-blind, cross-over design. Blood for appetite hormones and SCFA was collected at intervals over 6 h. A standard lunch was served 4 h after the test drink.

Results:

Relative to GLU, IN, but not RS, significantly increased SCFA areas under the curve (AUC) from 4–6 h (AUC4–6). Neither IN nor RS affected GLP-1 or PYY-AUC4–6. Although neither IN nor RS reduced ghrelin-AUC4–6 compared with GLU, ghrelin at 6 h after IN was significantly lower than that after GLU (P<0.05). After IN, relative to GLU, the changes in SCFA-AUC4–6 were negatively related to the changes in ghrelin-AUC4–6 (P=0.017). SCFA and hormone responses did not differ significantly between LN and OWO.

Conclusions:

Acute increases in colonic SCFA do not affect GLP-1 or PYY responses in LN or OWO subjects, but may reduce ghrelin. The results do not support the hypothesis that SCFA acutely stimulate PYY and GLP-1 secretion; however, a longer adaptation to increased colonic fermentation or a larger sample size may yield different results.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

References

  1. Liu S, Willett WC, Manson JE, Hu FB, Rosner B, Colditz G . Relation between changes in intakes of dietary fiber and grain products and changes in weight and development of obesity among middle-aged women. Am J Clin Nutr 2003; 78: 920–927.

    Article  CAS  Google Scholar 

  2. Howarth NC, Saltzman E, Roberts SB . Dietary fiber and weight regulation. Nutr Rev 2001; 59: 129–139.

    Article  CAS  Google Scholar 

  3. Kasubuchi M, Hasegawa S, Hiramatsu T, Ichimura A, Kimura I . Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients 2015; 7: 2839–2849.

    Article  CAS  Google Scholar 

  4. Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun 2013; 4: 1829.

    Article  Google Scholar 

  5. Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 2012; 61: 364–371.

    Article  CAS  Google Scholar 

  6. Zhou J, Martin RJ, Tulley RT, Raggio AM, McCutcheon KL, Shen L et al. Dietary resistant starch upregulates total GLP-1 and PYY in a sustained day-long manner through fermentation in rodents. Am J Phys 2008; 295: E1160–E1166.

    CAS  Google Scholar 

  7. Keenan MJ, Zhou J, McCutcheon KL, Raggio AM, Bateman HG, Todd E et al. Effects of resistant starch, a non-digestible fermentable fiber, on reducing body fat. Obesity 2006; 14: 1523–1534.

    Article  CAS  Google Scholar 

  8. Delzenne NM, Cani PD, Daubioul C, Neyrinck AM . Impact of inulin and oligofructose on gastrointestinal peptides. Br J Nutr 2005; 93 (SUPPL), S157–S161.

    Article  CAS  Google Scholar 

  9. Cani PD, Dewever C, Delzenne NM . Inulin-type fructans modulate gastrointestinal peptides involved in appetite regulation (glucagon-like peptide-1 and ghrelin) in rats. Br J Nutr 2004; 92: 521–526.

    Article  CAS  Google Scholar 

  10. Tarini J, Wolever TMS . The fermentable fibre inulin increases postprandial serum short-chain fatty acids and reduces free-fatty acids and ghrelin in healthy subjects. Appl Physiol Nutr Metab 2010; 35: 9–16.

    Article  CAS  Google Scholar 

  11. Nilsson A, Johansson E, Ekström L, Björck I . Effects of a brown beans evening meal on metabolic risk markers and appetite regulating hormones at a subsequent standardized breakfast: a randomized cross-over study. PLoS One 2013; 8: e55985.

    Article  Google Scholar 

  12. Cani PD, Lecourt E, Dewulf EM, Sohet FM, Pachikian BD, Naslain D et al. Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. Am J Clin Nutr 2009; 90: 1236–1243.

    Article  CAS  Google Scholar 

  13. Johansson EV, Nilsson AC, Östman EM, Björck IME . Effects of indigestible carbohydrates in barley on glucose metabolism, appetite and voluntary food intake over 16 h in healthy adults. Nutr J 2013; 12: 46.

    Article  CAS  Google Scholar 

  14. Klosterbuer AS, Thomas W, Slavin JL . Resistant starch and pullulan reduce postprandial glucose, insulin, and GLP-1, but have no effect on satiety in healthy humans. J Agric Food Chem 2012; 60: 11928–11934.

    Article  CAS  Google Scholar 

  15. Slavin J, Stewart M, Timm D, Grabitske H, Hospattankar A . Fermentation patterns and short chain fatty acid profiles of wheat dextrin and other functional fibres. In: van der Kamp JW, Jones JM, McCleary BV, Topping DL (eds). Dietary Fibre: New Frontiers for Food and Health. Wageningen Academic Publishers: Wageningen, The Netherlands, 2010, pp 177–191.

  16. Jenkins DJA, Vuksan V, Kendall CWC, Würsch P, Jeffcoat R, Waring S et al. Physiological effects of resistant starches on fecal bulk, short chain fatty acids, blood lipids and glycemic index. J Am Coll Nutr 1998; 17: 609–616.

    Article  CAS  Google Scholar 

  17. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI . An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006; 444: 1027–1031.

    Article  Google Scholar 

  18. Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI . Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 2005; 102: 11070–11075.

    Article  CAS  Google Scholar 

  19. Ley RE, Turnbaugh PJ, Klein S, Gordon JI . Microbial ecology: human gut microbes associated with obesity. Nature 2006; 444: 1022–1023.

    Article  CAS  Google Scholar 

  20. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 2013; 341: 1241214.

    Article  Google Scholar 

  21. Fernandes J, Su W, Rahat-Rozenbloom S, Wolever TMS, Comelli EM . Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr Diabetes 2014; 4: e121.

    Article  CAS  Google Scholar 

  22. Rahat-Rozenbloom S, Fernandes J, Gloor GB, Wolever TMS . Evidence for greater production of colonic short-chain fatty acids in overweight than lean humans. Int J Obes 2014; 38: 1525–1531.

    Article  CAS  Google Scholar 

  23. Ismail NA, Ragab SH, ElBaky AA, Shoeib ARS, Alhosary Y, Fekry D . Frequency of Firmicutes and Bacteroidetes in gut microbiota in obese and normal weight Egyptian children and adults. Arch Med Sci 2011; 7: 501–507.

    Article  CAS  Google Scholar 

  24. Rahat-Rozenbloom S, Fernandes J, Cheng J, Gloor GB, Wolever TMS The acute effects of inulin and resistant-starch on postprandial serum SCFA and second-meal glycaemic response in LN and overweight humans. Eur J Clin Nutr 2016: in press.

  25. Gentile CL, Ward E, Holst JJ, Astrup A, Ormsbee MJ, Connelly S et al. Resistant starch and protein intake enhances fat oxidation and feelings of fullness in lean and overweight/obese women. Nutr J 2015; 14: 113.

    Article  Google Scholar 

  26. Raben A, Tagliabue A, Christensen NJ, Madsen J, Holst JJ, Astrup A . Resistant starch: the effect on postprandial glycemia, hormonal response, and satiety. Am J Clin Nutr 1994; 60: 544–551.

    Article  CAS  Google Scholar 

  27. Bodinham CL, Al-Mana NM, Smith L, Robertson MD . Endogenous plasma glucagon-like peptide-1 following acute dietary fibre consumption. Br J Nutr 2013; 110: 1429–1433.

    Article  CAS  Google Scholar 

  28. Robertson MD, Currie JM, Morgan LM, Jewell DP, Frayn KN . Prior short-term consumption of resistant starch enhances postprandial insulin sensitivity in healthy subjects. Diabetologia 2003; 46: 659–665.

    Article  CAS  Google Scholar 

  29. Chambers ES, Viardot A, Psichas A, Morrison DJ, Murphy KG, Zac-Varghese SEK et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 2015; 64: 1744–1754.

    Article  CAS  Google Scholar 

  30. Freeland KR, Wolever TMS . Acute effects of intravenous and rectal acetate on glucagon-like peptide-1, peptide YY, ghrelin, adiponectin and tumour necrosis factor-alpha. Br J Nutr 2010; 103: 460–466.

    Article  CAS  Google Scholar 

  31. Byrne CS, Chambers ES, Alhabeeb H, Chhina N, Morrison DJ, Preston T et al. Increased colonic propionate reduces anticipatory reward responses in the human striatum to high-energy foods. Am J Clin Nutr 2016; 104: 5–14.

    Article  CAS  Google Scholar 

  32. Verhoef SPM, Meyer D, Westerterp KR . Effects of oligofructose on appetite profile, glucagon-like peptide 1 and peptide YY3-36 concentrations and energy intake. Br J Nutr 2011; 106: 1757–1762.

    Article  CAS  Google Scholar 

  33. Parnell JA, Reimer RA . Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults. Am J Clin Nutr 2009; 89: 1751–1759.

    Article  CAS  Google Scholar 

  34. Pedersen C, Lefevre S, Peters V, Patterson M, Ghatei MA, Morgan LM et al. Gut hormone release and appetite regulation in healthy non-obese participants following oligofructose intake. A dose-escalation study. Appetite 2013; 66: 44–53.

    Article  Google Scholar 

  35. Daud NM, Ismail NA, Thomas EL, Fitzpatrick JA, Bell JD, Swann JR et al. The impact of oligofructose on stimulation of gut hormones, appetite regulation and adiposity. Obesity 2014; 22: 1430–1438.

    Article  CAS  Google Scholar 

  36. Field BCT, Chaudhri OB, Bloom SR . Bowels control brain: Gut hormones and obesity. Nat Rev Endocrionol 2010; 6: 444–453.

    Article  CAS  Google Scholar 

  37. Müller TD, Nogueiras R, Andermann ML, Andrews ZB, Anker SD, Argente J et al. Ghrelin. Mol Metab 2015; 4: 437–460.

    Article  Google Scholar 

  38. Nilsson AC, Johansson-Boll EV, Björck IME . Increased gut hormones and insulin sensitivity index following a 3-d intervention with a barley kernel-based product: a randomised cross-over study in healthy middle-aged subjects. Br J Nutr 2015; 114: 899–907.

    Article  CAS  Google Scholar 

  39. Robertson MD, Bickerton AS, Dennis AL, Vidal H, Frayn KN . Insulin-sensitizing effects of dietary resistant starch and effects on skeletal muscle and adipose tissue metabolism. Am J Clin Nutr 2005; 82: 559–567.

    Article  CAS  Google Scholar 

  40. Zhou J, Martin RJ, Raggio AM, Shen L, McCutcheon K, Keenan MJ . The importance of GLP-1 and PYY in resistant starch's effect on body fat in mice. Mol Nutr Food Res 2015; 59: 1000–1003.

    Article  CAS  Google Scholar 

  41. Vidrine K, Ye J, Martin RJ, McCutcheon KL, Raggio AM, Pelkman C et al. Resistant starch from high amylose maize (HAM-RS2) and dietary butyrate reduce abdominal fat by a different apparent mechanism. Obesity 2014; 22: 344–348.

    Article  CAS  Google Scholar 

  42. Salazar N, Dewulf EM, Neyrinck AM, Bindels LB, Cani PD, Mahillon J et al. Inulin-type fructans modulate intestinal Bifidobacterium species populations and decrease fecal short-chain fatty acids in obese women. Clin Nutr 2015; 34: 501–507.

    Article  CAS  Google Scholar 

  43. Petersen N, Reimann F, Bartfeld S, Farin HF, Ringnalda FC, Vries RGJ et al. Generation of l cells in mouse and human small intestine organoids. Diabetes 2014; 63: 410–420.

    Article  CAS  Google Scholar 

  44. Freeland KR, Wilson C, Wolever TMS . Adaptation of colonic fermentation and glucagon-like peptide-1 secretion with increased wheat fibre intake for 1 year in hyperinsulinaemic human subjects. Br J Nutr 2010; 103: 82–90.

    Article  CAS  Google Scholar 

  45. Conterno L, Fava F, Viola R, Tuohy KM . Obesity and the gut microbiota: does up-regulating colonic fermentation protect against obesity and metabolic disease? Genes Nutr 2011; 6: 241–260.

    Article  CAS  Google Scholar 

  46. Rosenbaum M, Knight R, Leibel RL . The gut microbiota in human energy homeostasis and obesity. Trends Endocrinol Metab 2015; 26: 493–501.

    Article  CAS  Google Scholar 

  47. Li L, Jiang H, Kim H-, Yum M-, Campbell MR, Jane J- et al. Increased butyrate production during long-term fermentation of in vitro-digested high amylose cornstarch residues with human feces. J Food Sci 2015; 80: 1997–2004.

    Article  CAS  Google Scholar 

  48. Aguirre M, Jonkers DMAE, Troost FJ, Roeselers G, Venema K . In vitro characterization of the impact of different substrates on metabolite production, energy extraction and composition of gut microbiota from lean and obese subjects. PLoS ONE 2014; 9: e113864.

    Article  Google Scholar 

  49. Fernandes J, Vogt J, Wolever TMS . Kinetic model of acetate metabolism in healthy and hyperinsulinaemic humans. Eur J Clin Nutr 2014; 68: 1067–1071.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Kervan Rivera-Rufner for analysing serum and faecal SCFA. Supported by grant no. 486906 from the Canadian Institutes of Health Research (CIHR), Institute of Nutrition, Metabolism and Diabetes. Clinical Trials registration number (at www.ClinicalTrials.gov): NCT02562014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T M S Wolever.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on European Journal of Clinical Nutrition website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahat-Rozenbloom, S., Fernandes, J., Cheng, J. et al. Acute increases in serum colonic short-chain fatty acids elicited by inulin do not increase GLP-1 or PYY responses but may reduce ghrelin in lean and overweight humans. Eur J Clin Nutr 71, 953–958 (2017). https://doi.org/10.1038/ejcn.2016.249

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ejcn.2016.249

This article is cited by

Search

Quick links