Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Proximate causes for diet-induced obesity in laboratory mice: a case study

Abstract

Background/Objectives:

Detailed protocols and recommendations for the assessment of energy balance have been provided to address the problems associated with different body mass and body composition as apparent for mouse models in obesity research. Here, we applied these guidelines to investigate energy balance in two inbred mouse strains with contrasting susceptibilities for diet-induced obesity (DIO). Mice of the AKR/J strain are highly susceptible, whereas the SWR/J mice are almost completely resistant. The proximate mechanisms responsible for this striking phenotypic difference are only partially understood.

Subjects/Methods:

Body mass and body composition, metabolizable energy, energy expenditure (EE), body temperature and spontaneous physical activity behavior were first assessed in a cohort of male AKR/J (N=29) and SWR/J (N=30) mice fed on a low-fat control diet (CD) to identify metabolic adaptations determining resistance to DIO. Thereafter, the immediate metabolic responses to high-fat diet (HFD) feeding for 3 days were investigated. Groups of weight-matched AKR/J (N=8) and SWR/J (N=8) mice were selected from the initial cohort for this intervention.

Results:

Strain differences in body mass, fat mass and lean mass were adjusted by body mass as this was the only covariate significantly correlated with metabolizable energy and EE. On the CD, EE and fat oxidation was higher in SWR/J than in AKR/J mice, whereas no difference was found for metabolizable energy. In response to HFD feeding, both strains increased metabolizable energy intake, but also increased EE, body temperature, and fat oxidation. The catabolic adaptations to HFD feeding opposed the development of positive energy balance. Increased EE was not due to increased spontaneous physical activity. A significant strain difference was found when balancing metabolizable energy and daily energy expenditure (DEE).

Conclusions:

The guidelines were applicable with some limitations related to the adjustment of differences in body composition. Metabolic phenotyping revealed that metabolizable energy, DEE and metabolic fuel selection all contribute to the development of DIO. Therefore, assessing both sides of the energy balance equation is essential to identify the proximate mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Kopelman P . Health risks associated with overweight and obesity. Obes Rev 2007; 8: 13–17.

    Article  PubMed  Google Scholar 

  2. Malik VS, Willett WC, Hu FB . Global obesity: trends, risk factors and policy implications. Nat Rev Endocrinol 2013; 9: 13–27.

    Article  PubMed  Google Scholar 

  3. Genne-Bacon EA . Thinking evolutionarily about obesity. Yale J Biol Med 2014; 87: 99–112.

    PubMed  PubMed Central  Google Scholar 

  4. Maes HH, Neale MC, Eaves LJ . Genetic and environmental factors in relative body weight and human adiposity. Behav Genet 1997; 27: 325–351.

    Article  CAS  PubMed  Google Scholar 

  5. Mutch DM, Clement K . Unraveling the genetics of human obesity. PLoS Genet 2006; 2: e188.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hill JO, Peters JC . Environmental contributions to the obesity epidemic. Science 1998; 280: 1371–1374.

    Article  CAS  PubMed  Google Scholar 

  7. Ahmad S, Varga TV, Franks PW . Gene x environment interactions in obesity: the state of the evidence. Hum Hered 2013; 75: 106–115.

    Article  PubMed  Google Scholar 

  8. Hebebrand J, Hinney A . Environmental and genetic risk factors in obesity. Child Adolesc Psychiatr Clin N Am 2009; 18: 83–94.

    Article  PubMed  Google Scholar 

  9. Speakman JR . Obesity: the integrated roles of environment and genetics. J Nutr 2004; 134: 2090S–2105S.

    Article  CAS  PubMed  Google Scholar 

  10. Kozak LP . Brown fat and the myth of diet-induced thermogenesis. Cell Metab 2010; 11: 263–267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Galgani J, Ravussin E . Energy metabolism, fuel selection and body weight regulation. Int J Obes 2008; 32: S109–S119.

    Article  CAS  Google Scholar 

  12. Levine JA . Measurement of energy expenditure. Public Health Nutr 2005; 8: 1123–1132.

    Article  PubMed  Google Scholar 

  13. Rosenbaum M, Ravussin E, Matthews DE, Gilker C, Ferraro R, Heymsfield SB et al. A comparative study of different means of assessing long-term energy expenditure in humans. Am J Physiol 1996; 270: R496–R504.

    CAS  PubMed  Google Scholar 

  14. Tucker KL . Assessment of usual dietary intake in population studies of gene-diet interaction. Nutr Metab Cardiovasc Dis 2007; 17: 74–81.

    Article  CAS  PubMed  Google Scholar 

  15. Block G . Human dietary assessment: methods and issues. Prev Med 1989; 18: 653–660.

    Article  CAS  PubMed  Google Scholar 

  16. Kleiber M . Body size and metabolism. Hilgardia 1932; 6: 315–353.

    Article  CAS  Google Scholar 

  17. Meyer CW, Klingenspor M, Rozman J, Heldmaier G . Gene or size: metabolic rate and body temperature in obese growth hormone-deficient dwarf mice. Obes Res 2004; 12: 1509–1518.

    Article  CAS  PubMed  Google Scholar 

  18. Bogardus C, Lillioja S, Ravussin E, Abbott W, Zawadzki JK, Young A et al. Familial dependence of the resting metabolic rate. N Engl J Med 1986; 315: 96–100.

    Article  CAS  PubMed  Google Scholar 

  19. Elia M In: Kinney JM, Tucker HN (eds). Energy Metabolism: Tissue Determinants and Cellular Corollaries, Raven Press: New York, NY, USA, 1992, pp 61–77.

  20. Gallagher D, Belmonte D, Deurenberg P, Wang Z, Krasnow N, Pi-Sunyer FX et al. Organ-tissue mass measurement allows modeling of REE and metabolically active tissue mass. Am J Physiol 1998; 275: E249–E258.

    CAS  PubMed  Google Scholar 

  21. Allison DB, Paultre F, Goran MI, Poehlman ET, Heymsfield SB . Statistical considerations regarding the use of ratios to adjust data. Int J Obes Relat Metab Disord 1995; 19: 644–652.

    CAS  PubMed  Google Scholar 

  22. Packard GCB, T J . The use of percentages and size-specific indices to normalize physiological data for variation in body size: wasted time, wasted effort? Comparat Biochem Physiol A 1999; 122: 37–44.

    Article  Google Scholar 

  23. Tschop MH, Speakman JR, Arch JR, Auwerx J, Brüning JC, Chan L et al. A guide to analysis of mouse energy metabolism. Nat Methods 2012; 9: 57–63.

    Article  Google Scholar 

  24. Guo J, Hall KD . Estimating the continuous-time dynamics of energy and fat metabolism in mice. PLoS Comput Biol 2009; 5: e1000511.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Arch JR, Hislop D, Wang SJ, Speakman JR . Some mathematical and technical issues in the measurement and interpretation of open-circuit indirect calorimetry in small animals. Int J Obes 2006; 30: 1322–1331.

    Article  CAS  Google Scholar 

  26. Even PC, Nadkarni NA . Indirect calorimetry in laboratory mice and rats: principles, practical considerations, interpretation and perspectives. Am J Physiol Regul Integr Comparat Physiol 2012; 303: R459–R476.

    Article  CAS  Google Scholar 

  27. Kaiyala KJ, Schwartz MW . Toward a more complete (and less controversial) understanding of energy expenditure and its role in obesity pathogenesis. Diabetes 2011; 60: 17–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Speakman J, Hambly C, Mitchell S, Krol E . The contribution of animal models to the study of obesity. Lab Anim 2008; 42: 413–432.

    Article  CAS  PubMed  Google Scholar 

  29. West DB, Boozer CN, Moody DL, Atkinson RL . Dietary obesity in nine inbred mouse strains. Am J Physiol 1992; 262: R1025–R1032.

    CAS  PubMed  Google Scholar 

  30. West DB, Goudey-Lefevre J, York B, Truett GE . Dietary obesity linked to genetic loci on chromosomes 9 and 15 in a polygenic mouse model. J Clin Invest 1994; 94: 1410–1416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. West DB, Waguespack J, York B, Goudey-Lefevre J, Price RA . Genetics of dietary obesity in AKR/J x SWR/J mice: segregation of the trait and identification of a linked locus on chromosome 4. Mamm Genome 1994; 5: 546–552.

    Article  CAS  PubMed  Google Scholar 

  32. York B, Lei K, West DB . Inherited non-autosomal effects on body fat in F2 mice derived from an AKR/J x SWR/J cross. Mamm Genome 1997; 8: 726–730.

    Article  CAS  PubMed  Google Scholar 

  33. West DB, Waguespack J, McCollister S . Dietary obesity in the mouse: interaction of strain with diet composition. Am J Physiol 1995; 268: R658–R665.

    CAS  PubMed  Google Scholar 

  34. Paigen B . Genetics of responsiveness to high-fat and high-cholesterol diets in the mouse. Am J Clin Nutr 1995; 62: 458S–462S.

    Article  CAS  PubMed  Google Scholar 

  35. Smith BK, Andrews PK, York DA, West DB . Divergence in proportional fat intake in AKR/J and SWR/J mice endures across diet paradigms. Am J Physiol 1999; 277: R776–R785.

    CAS  PubMed  Google Scholar 

  36. Lightfoot JT, Turner MJ, Daves M, Vordermark A, Kleeberger SR . Genetic influence on daily wheel running activity level. Physiol Genomics 2004; 19: 270–276.

    Article  CAS  PubMed  Google Scholar 

  37. Turner MJ, Kleeberger SR, Lightfoot JT . Influence of genetic background on daily running-wheel activity differs with aging. Physiol Genomics 2005; 22: 76–85.

    Article  PubMed  Google Scholar 

  38. Storer JB . Relation of lifespan to brain weight, body weight, and metabolic rate among inbred mouse strains. Exp Gerontol 1967; 2: 173–182.

    Article  Google Scholar 

  39. Hesse D, Dunn M, Heldmaier G, Klingenspor M, Rozman J . Behavioural mechanisms affecting energy regulation in mice prone or resistant to diet- induced obesity. Physiol Behav 2010; 99: 370–380.

    Article  CAS  PubMed  Google Scholar 

  40. Bolze F, Rink N, Brumm H, Kühn R, Mocek S, Schwarz AE et al. Characterization of the melanocortin-4-receptor nonsense mutation W16X in vitro and in vivo. Pharmacogenomics J 2013; 13: 80–93.

    Article  CAS  PubMed  Google Scholar 

  41. Street JC, Butcher JE, Harris LE . Estimating urine energy from urine nitrogen. J Anim Sci 1964; 23: 1039–1041.

    Article  Google Scholar 

  42. Elvert R, Wille A, Wandschneider J, Werner U, Glombik H, Herling AW . Energy loss via urine and faeces–a combustive analysis in diabetic rats and the impact of antidiabetic treatment on body weight. Diabetes Obes Metab 2013; 15: 324–334.

    Article  CAS  PubMed  Google Scholar 

  43. Schutz Y . On problems of calculating energy expenditure and substrate utilization from respiratory exchange data. Z Ernahrungswiss 1997; 36: 255–262.

    Article  CAS  PubMed  Google Scholar 

  44. Heldmaier G, Ruf T . Body temperature and metabolic rate during natural hypothermia in endotherms. J Comp Physiol B 1992; 162: 696–706.

    Article  CAS  PubMed  Google Scholar 

  45. Smith BK, Andrews PK, West DB . Macronutrient diet selection in thirteen mouse strains. Am J Physiol 2000; 278: R797–R805.

    Article  CAS  Google Scholar 

  46. Leibowitz SF, Alexander J, Dourmashkin JT, Hill JO, Gayles EC, Chang GQ . Phenotypic profile of SWR/J and A/J mice compared to control strains: possible mechanisms underlying resistance to obesity on a high-fat diet. Brain Res 2005; 1047: 137–147.

    Article  CAS  PubMed  Google Scholar 

  47. Thomas LW . The chemical composition of adipose tissue of man and mice. Q J Exp Physiol Cogn Med Sci 1962; 47: 179–188.

    CAS  PubMed  Google Scholar 

  48. Wishnofsky M . Caloric equivalents of gained or lost weight. Am J Clin Nutr 1958; 6: 542–546.

    Article  CAS  PubMed  Google Scholar 

  49. Lyons JA, Haring JS, Biga PR . Myostatin expression, lymphocyte population, and potential cytokine production correlate with predisposition to high-fat diet induced obesity in mice. PloS One 2010; 5: e12928.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chadt A, Leicht K, Deshmukh A, Jiang LQ, Scherneck S, Bernhardt U et al. Tbc1d1 mutation in lean mouse strain confers leanness and protects from diet-induced obesity. Nat Genet 2008; 40: 1354–1359.

    Article  CAS  PubMed  Google Scholar 

  51. Kluge R, Giesen K, Bahrenberg G, Plum L, Ortlepp JR, Joost HG . Quantitative trait loci for obesity and insulin resistance (Nob1, Nob2) and their interaction with the leptin receptor allele (LeprA720T/T1044I) in New Zealand obese mice. Diabetologia 2000; 43: 1565–1572.

    Article  CAS  PubMed  Google Scholar 

  52. Giesen K, Plum L, Kluge R, Ortlepp J, Joost HG . Diet-dependent obesity and hypercholesterolemia in the New Zealand obese mouse: identification of a quantitative trait locus for elevated serum cholesterol on the distal mouse chromosome 5. Biochem Biophys Res Commun 2003; 304: 812–817.

    Article  CAS  PubMed  Google Scholar 

  53. Eberhart GP, West DB, Boozer CN, Atkinson RL . Insulin sensitivity of adipocytes from inbred mouse strains resistant or sensitive to diet-induced obesity. Am J Physiol 1994; 266: R1423–R1428.

    CAS  PubMed  Google Scholar 

  54. Jung AP, Curtis TS, Turner MJ, Lightfoot JT . Physical activity and food consumption in high- and low-active inbred mouse strains. Med Sci Sports Exerc 2010; 42: 1826–1833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lightfoot JT, Turner MJ, Debate KA, Kleeberger SR . Interstrain variation in murine aerobic capacity. Med Sci Sports Exerc 2001; 33: 2053–2057.

    Article  CAS  PubMed  Google Scholar 

  56. Milner LC, Crabbe JC . Three murine anxiety models: results from multiple inbred strain comparisons. Genes Brain Behav 2008; 7: 496–505.

    Article  CAS  PubMed  Google Scholar 

  57. Prpic V, Watson PM, Frampton IC, Sabol MA, Jezek GE, Gettys TW . Adaptive changes in adipocyte gene expression differ in AKR/J and SWR/J mice during diet-induced obesity. J Nutr 2002; 132: 3325–3332.

    Article  CAS  PubMed  Google Scholar 

  58. Bjursell M, Gerdin AK, Lelliott CJ, Egecioglu E, Elmgren A, Törnell J et al. Acutely reduced locomotor activity is a major contributor to Western diet-induced obesity in mice. Am J Physiol 2008; 294: E251–E260.

    Article  CAS  Google Scholar 

  59. Secor SM . Specific dynamic action: a review of the postprandial metabolic response. J Comp Physiol B 2009; 179: 1–56.

    Article  PubMed  Google Scholar 

  60. Fromme T, Klingenspor M . Uncoupling protein 1 expression and high-fat diets. Am J Physiol 2011; 300: R1–R8.

    Article  CAS  Google Scholar 

  61. Carter-Dawson LD, LaVail MM, Sidman RL . Differential effect of the rd mutation on rods and cones in the mouse retina. Invest Ophthalmol Vis Sci 1978; 17: 489–498.

    CAS  PubMed  Google Scholar 

  62. Bowes C, Li T, Frankel WN, Danciger M, Coffin JM, Applebury ML et al. Localization of a retroviral element within the rd gene coding for the beta subunit of cGMP phosphodiesterase. Proc Natl Acad Sci USA 1993; 90: 2955–2959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dalke C, Löster J, Fuchs H, Gailus-Durner V, Soewarto D, Favor J et al. Electroretinography as a screening method for mutations causing retinal dysfunction in mice. Invest Ophthalmol Vis Sci 2004; 45: 601–609.

    Article  PubMed  Google Scholar 

  64. Yoshida C, Shikata N, Seki S, Koyama N, Noguchi Y . Early nocturnal meal skipping alters the peripheral clock and increases lipogenesis in mice. Nutr Metab 2012; 9: 78.

    Article  CAS  Google Scholar 

  65. Antunes LC, Levandovski R, Dantas G, Caumo W, Hidalgo MP . Obesity and shift work: chronobiological aspects. Nutr Res Rev 2010; 23: 155–168.

    Article  CAS  PubMed  Google Scholar 

  66. Froy O . Metabolism and circadian rhythms—implications for obesity. Endocr Rev 2010; 31: 1–24.

    Article  CAS  PubMed  Google Scholar 

  67. Kohsaka A, Laposky AD, Ramsey KM, Estrada C, Joshu C, Kobayashi Y et al. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab 2007; 6: 414–421.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was funded by the Federal Ministry of Education and Research Germany (FKZ: 0315674), the Else Kröner-Fresenius Stiftung (EKFS), and the Deutsche Forschungsgemeinschaft (DFG-GRK 1482). CK was an associate fellow of the Research Training Group GRK 1482 funded by the German Research Foundation (DFG, Deutsche Forschungsgemeinschaft).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Klingenspor.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kless, C., Rink, N., Rozman, J. et al. Proximate causes for diet-induced obesity in laboratory mice: a case study. Eur J Clin Nutr 71, 306–317 (2017). https://doi.org/10.1038/ejcn.2016.243

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ejcn.2016.243

This article is cited by

Search

Quick links