Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lipids and cardiovascular/metabolic health

Associations between CD36 gene polymorphisms, fat tolerance and oral fat preference in a young-adult population

Abstract

Background/Objectives:

CD36 is known to be an orosensory receptor for dietary long-chain fatty acids, as well as being involved in the chemosensory mechanisms within the human gut. Recent data have demonstrated an association between CD36 single-nucleotide polymorphisms (SNPs) and lipid consumption behaviours in humans. This study aimed to test for associations between CD36 SNPs and response to a high-fat meal in a young healthy Australian cohort. Secondary associations were tested between CD36 gene variants and fasting lipid parameters, body composition, cardiovascular disease (CVD) risk factors and measures of oral fat preference.

Subjects/Methods:

Two SNPs (rs1527479 and rs1984112) were assessed for associations with response to a 75 g saturated fat oral fat tolerance test (OFTT), whole-body substrate oxidation, fasting plasma lipids, CVD risk factors and self-reported habitual diet questionnaires. Genotyping was performed using real-time polymerase chain reaction.

Results:

Cross-sectional data were collected on 56 individuals (28 m, 28 f; 24.9±3.3 years), with 42 completing participation in a high-fat OFTT. No genotypic associations were evident in anthropometric data or self-reported fat preference measures. AA SNP carriers at rs1984112 exhibited significantly elevated fasting triglyceride when compared with non-carriers (P=0.024). This group also tended to have an elevated response to a high-fat meal (P=0.078).

Conclusions:

Although these data show the potential pleiotropic influence of CD36 SNP rs1984112 on lipoprotein accumulation in a young healthy cohort, further assessment in a larger cohort is warranted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. World Health Organization. Obesity and overweight. 2014. Available at: http://www.who.int/mediacentre/factsheets/fs311/en/ (accessed on 20 June 2014).

  2. Bokor S, Legry V, Meirhaeghe A, Ruiz JR, Mauro B, Widhalm K et al. Single-nucleotide polymorphism of CD36 locus and obesity in European adolescents. Obesity (Silver Spring) 2010; 18: 1398–1403.

    Article  CAS  Google Scholar 

  3. Love-Gregory L, Sherva R, Sun L, Wasson J, Schappe T, Doria A et al. Variants in the CD36 gene associate with the metabolic syndrome and high-density lipoprotein cholesterol. Hum Mol Genet 2008; 17: 1695–1704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Choquet H, Labrune Y, De Graeve F, Hinney A, Hebebrand J, Scherag A et al. Lack of association of CD36 SNPs with early onset obesity: a meta-analysis in 9,973 European subjects. Obesity (Silver Spring) 2011; 19: 833–839.

    Article  CAS  Google Scholar 

  5. Love-Gregory L, Abumrad NA . CD36 genetics and the metabolic complications of obesity. Curr Opin Clin Nutr Metab Care 2011; 14: 527–534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ibrahimi A, Bonen A, Blinn WD, Hajri T, Li X, Zhong K et al. Muscle-specific overexpression of FAT/CD36 enhances fatty acid oxidation by contracting muscle, reduces plasma triglycerides and fatty acids, and increases plasma glucose and insulin. J Biol Chem 1999; 274: 26761–26766.

    Article  CAS  PubMed  Google Scholar 

  7. Bonen A, Han X-X, Habets DDJ, Febbraio M, Glatz JFC, Luiken JJFP . A null mutation in skeletal muscle FAT/CD36 reveals its essential role in insulin- and AICAR-stimulated fatty acid metabolism. Am J Physiol Endocrinol Metab 2007; 292: E1740–E1749.

    Article  CAS  PubMed  Google Scholar 

  8. Nickerson JG, Alkhateeb H, Benton CR, Lally J, Nickerson J, Han X-X et al. Greater transport efficiencies of the membrane fatty acid transporters FAT/CD36 and FATP4 compared with FABPpm and FATP1 and differential effects on fatty acid esterification and oxidation in rat skeletal muscle. J Biol Chem 2009; 284: 16522–16530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yanai H, Watanabe I, Ishii K, Morimoto M, Fujiwara H, Yoshida S et al. Attenuated aerobic exercise capacity in CD36 deficiency. J Med Genet 2007; 44: 445–447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Holloway GP, Bezaire V, Heigenhauser GJF, Tandon NN, Glatz JFC, Luiken JJFP et al. Mitochondrial long chain fatty acid oxidation, fatty acid translocase/ CD36 content and carnitine palmitoyltransferase I activity in human skeletal muscle during aerobic exercise. J Physiol 2006; 571: 201–210.

    Article  CAS  PubMed  Google Scholar 

  11. Smith BK, Bonen A, Holloway GP . A dual mechanism of action for skeletal muscle FAT/CD36 during exercise. Exerc Sport Sci Rev 2012; 40: 211–217.

    Article  PubMed  Google Scholar 

  12. Jayewardene AF, Gwinn T, Hancock DP, Mavros Y, Rooney KB . The associations between polymorphisms in the CD36 gene, fat oxidation and cardiovascular disease risk factors in a young adult Australian population: a pilot study. Obes Res Clin Pract 2014; 8: e618–e621.

    Article  PubMed  Google Scholar 

  13. Jayewardene AF, Mavros Y, Gwinn T, Hancock DP, Rooney KB . Associations between CD36 gene polymorphisms and metabolic response to a short-term endurance training program in a young-adult population. Appl Physiol Nutr Metab 2015; 41: 157–167.

    Article  PubMed  Google Scholar 

  14. Ma X, Bacci S, Mlynarski W, Gottardo L, Soccio T, Menzaghi C et al. A common haplotype at the CD36 locus is associated with high free fatty acid levels and increased cardiovascular risk in Caucasians. [Erratum appears in Hum Mol Genet 2005;14:3973] Hum Mol Genet 2004; 13: 2197–2205.

    Article  CAS  PubMed  Google Scholar 

  15. Febbraio M, Silverstein RL . CD36: implications in cardiovascular disease. Int J Biochem Cell Biol 2007; 39: 2012–2030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Noel SE, Lai C-Q, Mattei J, Parnell LD, Ordovas JM, Tucker KL . Variants of the CD36 gene and metabolic syndrome in Boston Puerto Rican adults. Atherosclerosis 2010; 211: 210–215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mattes RD . Oral fat exposure alters postprandial lipid metabolism in humans. Am J Clin Nutr 1996; 63: 911–917.

    CAS  PubMed  Google Scholar 

  18. Mattes RD . The taste of fat elevates postprandial triacylglycerol. Physiol Behav 2001; 74: 343–348.

    Article  CAS  PubMed  Google Scholar 

  19. Lobo MV, Huerta L, Ruiz-Velasco N, Teixeiro E, de la Cueva P, Celdran A et al. Localization of the lipid receptors CD36 and CLA-1/SR-BI in the human gastrointestinal tract: towards the identification of receptors mediating the intestinal absorption of dietary lipids. J Histochem Cytochem 2001; 49: 1253–1260.

    Article  CAS  PubMed  Google Scholar 

  20. Laugerette F, Passilly-Degrace P, Patris B, Niot I, Febbraio M, Montmayeur J-P et al. CD36 involvement in orosensory detection of dietary lipids, spontaneous fat preference, and digestive secretions. J Clin Invest 2005; 115: 3177–3184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Simons PJ, Kummer JA, Luiken JJ, Boon L . Apical CD36 immunolocalization in human and porcine taste buds from circumvallate and foliate papillae. Acta Histochem 2011; 113: 839–843.

    Article  CAS  PubMed  Google Scholar 

  22. Kuwasako T, Hirano K, Sakai N, Ishigami M, Hiraoka H, Yakub MJ et al. Lipoprotein abnormalities in human genetic CD36 deficiency associated with insulin resistance and abnormal fatty acid metabolism. Diabetes Care 2003; 26: 1647–1648.

    Article  PubMed  Google Scholar 

  23. Keller KL, Liang LCH, Sakimura J, May D, van Belle C, Breen C et al. Common variants in the CD36 gene are associated with oral fat perception, fat preferences, and obesity in African Americans. Obesity (Silver Spring) 2012; 20: 1066–1073.

    Article  CAS  Google Scholar 

  24. National Heart Foundation. Guide to management of hypertension 2008. 2010. Available at: http://www.heartfoundation.org.au/SiteCollectionDocuments/HypertensionGuidelines2008to2010Update.pdf (accessed on 9 December 2010).

  25. Palatini P, Benetos A, Grassi G, Julius S, Kjeldsen SE, Mancia G et al. Identification and management of the hypertensive patient with elevated heart rate: statement of a European Society of Hypertension Consensus Meeting. J Hypertens 2006; 24: 603–610.

    Article  CAS  PubMed  Google Scholar 

  26. Dalton M, Cameron AJ, Zimmet PZ, Shaw JE, Jolley D, Dunstan DW et al. Waist circumference, waist-hip ratio and body mass index and their correlation with cardiovascular disease risk factors in Australian adults. J Intern Med 2003; 254: 555–563.

    Article  CAS  PubMed  Google Scholar 

  27. Friedewald WT, Levy RI, Fredrickson DS . Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 1972; 18: 499–502.

    CAS  PubMed  Google Scholar 

  28. Ahmadi S-A, Boroumand M-A, Gohari-Moghaddam K, Tajik P, Dibaj S-M . The impact of low serum triglyceride on LDL-cholesterol estimation. Arch Iran Med 2008; 11: 318–321.

    CAS  PubMed  Google Scholar 

  29. Barrett JS, Gibson PR . Development and validation of a comprehensive semi-quantitative food frequency questionnaire that includes FODMAP intake and glycemic index. J Am Diet Assoc 2010; 110: 1469–1476.

    Article  PubMed  Google Scholar 

  30. White MA, Whisenhunt BL, Williamson DA, Greenway FL, Netemeyer RG . Development and validation of the food-craving inventory. Obes Res 2002; 10: 107–114.

    Article  PubMed  Google Scholar 

  31. Zderic TW, Coggan AR, Ruby BC . Glucose kinetics and substrate oxidation during exercise in the follicular and luteal phases. J Appl Physiol 2001; 90: 447–453.

    Article  CAS  PubMed  Google Scholar 

  32. Peronnet F, Massicotte D . Table of nonprotein respiratory quotient: an update. Can J Sport Sci 1991; 16: 23–29.

    CAS  PubMed  Google Scholar 

  33. Baecke JA, Burema J, Frijters JE . A short questionnaire for the measurement of habitual physical activity in epidemiological studies. Am J Clin Nutr 1982; 36: 936–942.

    Article  CAS  PubMed  Google Scholar 

  34. Hedges LV, Olkin I . Statistical Method for Meta-analysis. Academic press: New York, NY, USA, 2014.

    Google Scholar 

  35. Febbraio M, Abumrad NA, Hajjar DP, Sharma K, Cheng W, Pearce SF et al. A null mutation in murine CD36 reveals an important role in fatty acid and lipoprotein metabolism. J Biol Chem 1999; 274: 19055–19062.

    Article  CAS  PubMed  Google Scholar 

  36. Miller M, Stone NJ, Ballantyne C, Bittner V, Criqui MH, Ginsberg HN et al. Triglycerides and cardiovascular disease: A scientific statement from the American Heart Association. Circulation 2011; 123: 2292–2333.

    Article  PubMed  Google Scholar 

  37. Nordestgaard BG, Varbo A . Triglycerides and cardiovascular disease. Lancet 2014; 384: 626–635.

    Article  CAS  PubMed  Google Scholar 

  38. Kahn SE, Hull RL, Utzschneider KM . Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006; 444: 840–846.

    Article  CAS  PubMed  Google Scholar 

  39. Corpeleijn E, Saris WHM, Blaak EE . Metabolic flexibility in the development of insulin resistance and type 2 diabetes: effects of lifestyle. Obes Rev 2009; 10: 178–193.

    Article  CAS  PubMed  Google Scholar 

  40. Corpeleijn E, van der Kallen CJH, Kruijshoop M, Magagnin MGP, de Bruin TWA, Feskens EJM et al. Direct association of a promoter polymorphism in the CD36/FAT fatty acid transporter gene with type 2 diabetes mellitus and insulin resistance. Diabet Med 2006; 23: 907–911.

    Article  CAS  PubMed  Google Scholar 

  41. Lepretre F, Vasseur F, Vaxillaire M, Scherer PE, Ali S, Linton K et al. A CD36 nonsense mutation associated with insulin resistance and familial type 2 diabetes. Hum Mutat 2004; 24: 104.

    Article  PubMed  Google Scholar 

  42. Sundaresan S, Abumrad NA . Dietary lipids inform the gut and brain about meal arrival via CD36-mediated signal transduction. J Nutr 2015; 145: 2195–2200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Love-Gregory L, Sherva R, Schappe T, Qi JS, McCrea J, Klein S et al. Common CD36 SNPs reduce protein expression and may contribute to a protective atherogenic profile. Hum Mol Genet 2011; 20: 193–201.

    Article  CAS  PubMed  Google Scholar 

  44. Pepino MY, Love-Gregory L, Klein S, Abumrad NA . The fatty acid translocase gene CD36 and lingual lipase influence oral sensitivity to fat in obese subjects. J Lipid Res 2012; 53: 561–566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Masuda D, Hirano K, Oku H, Sandoval JC, Kawase R, Yuasa-Kawase M et al. Chylomicron remnants are increased in the postprandial state in CD36 deficiency. J Lipid Res 2009; 50: 999–1011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Johnson GC, Esposito L, Barratt BJ, Smith AN, Heward J, Di Genova G et al. Haplotype tagging for the identification of common disease genes. Nat Genet 2001; 29: 233–237.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Ms Anneleise Reeves, Mr Guy Wilson and Ms Hazwani Hanafi for their assistance with data collection. We also thank Ms Diane Mould and Mr Raymond Patton for their assistance with equipment maintenance. AF Jayewardene was supported by the Australian Postgraduate Award Scholarship. Y Mavros was supported by the CRN for Advancing Exercise and Sport Science as a postdoctoral research associate. This study was funded using the University of Sydney Faculty Funding Scheme and a private philanthropic donation to the Discipline of Exercise and Sport Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A F Jayewardene.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on European Journal of Clinical Nutrition website .

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayewardene, A., Mavros, Y., Hancock, D. et al. Associations between CD36 gene polymorphisms, fat tolerance and oral fat preference in a young-adult population. Eur J Clin Nutr 70, 1325–1331 (2016). https://doi.org/10.1038/ejcn.2016.132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ejcn.2016.132

Search

Quick links