Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The prebiotic concept and human health: a changing landscape with riboflavin as a novel prebiotic candidate?

Subjects

A Corrigendum to this article was published on 07 December 2016

Abstract

Emerging evidence suggests that the gut microbiota has a critical role in both the maintenance of human health and the pathogenesis of many diseases. Modifying the colonic microbiota using functional foods has attracted significant research effort and product development. The pioneering concept of prebiotics, as introduced by Gibson and Roberfroid in the 1990s, emphasized the importance of diet in the modulation of the gut microbiota and its relationships to human health. Increasing knowledge of the intestinal microbiota now suggests a more comprehensive definition. This paper briefly reviews the basics of the prebiotic concept with a discussion of recent attempts to refine the concept to open the door for novel prebiotic food ingredients, such as polyphenols, minerals and vitamins.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2

References

  1. Owyang C, Wu GD . The gut microbiome in health and disease. Gastroenterology 2014; 146: 1433–1436.

    Article  PubMed  Google Scholar 

  2. Marchesi JR, Adams DH, Fava F, Hermes GD, Hirschfield GM, Hold G et al. The gut microbiota and host health: a new clinical frontier. Gut 2015; 65: 330–339.

    Article  PubMed  Google Scholar 

  3. Frank DN St, Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR . Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA 2007; 104: 13780–13785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. de Goffau MC, Luopajarvi K, Knip M, Ilonen J, Ruohtula T, Harkonen T et al. Fecal microbiota composition differs between children with beta-cell autoimmunity and those without. Diabetes 2013; 62: 1238–1244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ley RE, Turnbaugh PJ, Klein S, Gordon JI . Microbial ecology: human gut microbes associated with obesity. Nature 2006; 444: 1022–1023.

    CAS  Article  PubMed  Google Scholar 

  6. Cryan JF, Dinan TG . Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 2012; 13: 701–712.

    Article  CAS  PubMed  Google Scholar 

  7. Grenham S, Clarke G, Cryan JF, Dinan TG . Brain-gut-microbe communication in health and disease. Front Physiol 2011; 2: 94.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Metchnikoff E The prolongation of life: optimistic studies. In: Chalmers Mitchell P (ed). GP Putnam’s Sons: New York, London, 1908.

  9. van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 2013; 368: 407–415.

    Article  CAS  PubMed  Google Scholar 

  10. Gibson GR, Roberfroid MB . Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 1995; 125: 1401–1412.

    CAS  Article  PubMed  Google Scholar 

  11. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014; 505: 559–563.

    Article  CAS  PubMed  Google Scholar 

  12. Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 2009; 58: 1091–1103.

    Article  CAS  PubMed  Google Scholar 

  13. Cani PD, Lecourt E, Dewulf EM, Sohet FM, Pachikian BD, Naslain D et al. Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. Am J Clin Nutr 2009; 90: 1236–1243.

    Article  CAS  PubMed  Google Scholar 

  14. Kellow NJ, Coughlan MT, Reid CM . Metabolic benefits of dietary prebiotics in human subjects: a systematic review of randomised controlled trials. Br J Nutr 2014; 111: 1147–1161.

    Article  CAS  PubMed  Google Scholar 

  15. Yazawa K, Imai K, Tamura Z . Oligosaccharides and polysaccharides specifically utilizable by bifidobacteria. Chem Pharm Bull (Tokyo) 1978; 26: 3306–3311.

    Article  CAS  Google Scholar 

  16. Mitsuoka T, Hidaka H, Eida T . Effect of fructo-oligosaccharides on intestinal microflora. Nahrung 1987; 31: 427–436.

    Article  CAS  PubMed  Google Scholar 

  17. Gibson GR, Probert HM, Loo JV, Rastall RA, Roberfroid MB . Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev 2004; 17: 259–275.

    Article  CAS  PubMed  Google Scholar 

  18. Roberfroid M . Prebiotics: the concept revisited. J Nutr 2007; 137 (Suppl 2), 830S–837S.

    Article  CAS  PubMed  Google Scholar 

  19. Gibson GR, Scott KP, Rastall RA, Tuohy KM, Hotchkiss A, Dubert-Ferrandon A et al. Dietary prebiotics: current status and new definition. Food Sci Technol Bull (Funct Foods) 2010; 1–19.

  20. Bindels LB, Delzenne NM, Cani PD, Walter J . Towards a more comprehensive concept for prebiotics. Nat Rev Gastroenterol Hepatol 2015; 12: 303–310.

    Article  CAS  PubMed  Google Scholar 

  21. Pineiro M, Asp NG, Reid G, Macfarlane S, Morelli L, Brunser O et al. FAO Technical meeting on prebiotics. J Clin Gastroenterol 2008; 42: S156–S159.

    Article  PubMed  Google Scholar 

  22. Hutkins RW, Krumbeck JA, Bindels LB, Cani PD, Fahey G Jr, Goh YJ et al. Prebiotics: why definitions matter. Curr Opin Biotechnol 2016; 37: 1–7.

    Article  CAS  PubMed  Google Scholar 

  23. Reid G, Sanders ME, Gaskins HR, Gibson GR, Mercenier A, Rastall R et al. New scientific paradigms for probiotics and prebiotics. J Clin Gastroenterol 2003; 37: 105–118.

    Article  PubMed  Google Scholar 

  24. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 2010; 107: 14691–14696.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chassard C, Lacroix C . Carbohydrates and the human gut microbiota. Curr Opin Clin Nutr Metab Care 2013; 16: 453–460.

    Article  CAS  PubMed  Google Scholar 

  26. Marcobal A, Sonnenburg JL . Human milk oligosaccharide consumption by intestinal microbiota. Clin Microbiol Infect 2012; 18: 12–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nyangale EP, Mottram DS, Gibson GR . Gut microbial activity, implications for health and disease: the potential role of metabolite analysis. J Proteome Res 2012; 11: 5573–5585.

    Article  CAS  PubMed  Google Scholar 

  28. Riviere A, Gagnon M, Weckx S, Roy D, De Vuyst L . Mutual cross-feeding interactions between Bifidobacterium longum NCC2705 and Eubacterium rectale ATCC 33656 explain the bifidogenic and butyrogenic effects of arabinoxylan-oligosaccharides. Appl Environ Microbiol 2015; 81: 7767–7781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Salyers AA . Energy sources of major intestinal fermentative anaerobes. Am J Clin Nutr 1979; 32: 158–163.

    Article  CAS  PubMed  Google Scholar 

  30. Hickson M, D'Souza AL, Muthu N, Rogers TR, Want S, Rajkumar C et al. Use of probiotic Lactobacillus preparation to prevent diarrhoea associated with antibiotics: randomised double blind placebo controlled trial. BMJ 2007; 335: 80.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bouhnik Y, Flourie B, D'Agay-Abensour L, Pochart P, Gramet G, Durand M et al. Administration of transgalacto-oligosaccharides increases fecal bifidobacteria and modifies colonic fermentation metabolism in healthy humans. J Nutr 1997; 127: 444–448.

    Article  CAS  PubMed  Google Scholar 

  32. Jaskari J, Kontula P, Siitonen A, Jousimies-Somer H, Mattila-Sandholm T, Poutanen K . Oat beta-glucan and xylan hydrolysates as selective substrates for Bifidobacterium and Lactobacillus strains. Appl Microbiol Biotechnol 1998; 49: 175–181.

    Article  CAS  PubMed  Google Scholar 

  33. Kleessen B, Sykura B, Zunft HJ, Blaut M . Effects of inulin and lactose on fecal microflora, microbial activity, and bowel habit in elderly constipated persons. Am J Clin Nutr 1997; 65: 1397–1402.

    Article  CAS  PubMed  Google Scholar 

  34. Rastall RA, Gibson GR . Recent developments in prebiotics to selectively impact beneficial microbes and promote intestinal health. Curr Opin Biotechnol 2015; 32: 42–46.

    Article  CAS  PubMed  Google Scholar 

  35. Borriello SP, Hammes WP, Holzapfel W, Marteau P, Schrezenmeir J, Vaara M et al. Safety of probiotics that contain lactobacilli or bifidobacteria. Clin Infect Dis 2003; 36: 775–780.

    Article  CAS  PubMed  Google Scholar 

  36. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M et al. Diversity of the human intestinal microbial flora. Science 2005; 308: 1635–1638.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Verbeke KA, Boobis AR, Chiodini A, Edwards CA, Franck A, Kleerebezem M et al. Towards microbial fermentation metabolites as markers for health benefits of prebiotics. Nutr Res Rev 2015; 28: 42–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lewis S, Burmeister S, Brazier J . Effect of the prebiotic oligofructose on relapse of Clostridium difficile-associated diarrhea: a randomized, controlled study. Clin Gastroenterol Hepatol 2005; 3: 442–448.

    Article  CAS  PubMed  Google Scholar 

  39. Whelan K . Probiotics and prebiotics in the management of irritable bowel syndrome: a review of recent clinical trials and systematic reviews. Curr Opin Clin Nutr Metab Care 2011; 14: 581–587.

    Article  PubMed  Google Scholar 

  40. Leenen CH, Dieleman LA . Inulin and oligofructose in chronic inflammatory bowel disease. J Nutr 2007; 137 (11 Suppl), 2572S–2575S.

    Article  CAS  PubMed  Google Scholar 

  41. Drakoularakou A, Tzortzis G, Rastall RA, Gibson GR . A double-blind, placebo-controlled, randomized human study assessing the capacity of a novel galacto-oligosaccharide mixture in reducing travellers' diarrhoea. Eur J Clin Nutr 2010; 64: 146–152.

    Article  CAS  PubMed  Google Scholar 

  42. Osborn DA, Sinn JK . Prebiotics in infants for prevention of allergy. Cochrane Database Syst Rev 2013; 3: CD006474.

    Google Scholar 

  43. Verhoef SP, Meyer D, Westerterp KR . Effects of oligofructose on appetite profile, glucagon-like peptide 1 and peptide YY3-36 concentrations and energy intake. Br J Nutr 2011; 106: 1757–1762.

    Article  CAS  PubMed  Google Scholar 

  44. Parnell JA, Reimer RA . Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults. Am J Clin Nutr 2009; 89: 1751–1759.

    Article  CAS  PubMed  Google Scholar 

  45. Frost G, Sleeth ML, Sahuri-Arisoylu M, Lizarbe B, Cerdan S, Brody L et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun 2014; 5: 3611.

    Article  CAS  PubMed  Google Scholar 

  46. Canfora EE, Jocken JW, Blaak EE . Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol 2015; 11: 577–591.

    Article  CAS  PubMed  Google Scholar 

  47. De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 2014; 156: 84–96.

    Article  CAS  PubMed  Google Scholar 

  48. Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I et al. Prebiotic effects: metabolic and health benefits. Br J Nutr 2010; 104: S1–S63.

    Article  CAS  PubMed  Google Scholar 

  49. Gibson GR, Fuller R . Aspects of in vitro and in vivo research approaches directed toward identifying probiotics and prebiotics for human use. J Nutr 2000; 130: 391S–395S.

    Article  CAS  PubMed  Google Scholar 

  50. Bird AR, Conlon MA, Christophersen CT, Topping DL . Resistant starch, large bowel fermentation and a broader perspective of prebiotics and probiotics. Benef Microbes 2010; 1: 423–431.

    Article  CAS  PubMed  Google Scholar 

  51. Vrieze A, Van Nood E, Holleman F, Salojarvi J, Kootte RS, Bartelsman JF et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 2012; 143: 913–916 e917.

    Article  CAS  PubMed  Google Scholar 

  52. Slavin J . Fiber and prebiotics: mechanisms and health benefits. Nutrients 2013; 5: 1417–1435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hamaker BR, Tuncil YE . A perspective on the complexity of dietary fiber structures and their potential effect on the gut microbiota. J Mol Biol 2014; 426: 3838–3850.

    Article  CAS  PubMed  Google Scholar 

  54. Birt DF, Boylston T, Hendrich S, Jane JL, Hollis J, Li L et al. Resistant starch: promise for improving human health. Adv Nutr 2013; 4: 587–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermudez-Humaran LG, Gratadoux JJ et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA 2008; 105: 16731–16736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Quevrain E, Maubert MA, Michon C, Chain F, Marquant R, Tailhades J et al. Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn's disease. Gut 2016; 65: 415–425.

    Article  CAS  PubMed  Google Scholar 

  57. Everard A, Lazarevic V, Derrien M, Girard M, Muccioli GG, Neyrinck AM et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes 2011; 60: 2775–2786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 2013; 500: 232–236.

    Article  CAS  PubMed  Google Scholar 

  59. Dewulf EM, Cani PD, Claus SP, Fuentes S, Puylaert PG, Neyrinck AM et al. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 2013; 62: 1112–1121.

    Article  CAS  PubMed  Google Scholar 

  60. Serino M, Luche E, Gres S, Baylac A, Berge M, Cenac C et al. Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut 2012; 61: 543–553.

    Article  CAS  PubMed  Google Scholar 

  61. Anhe FF, Roy D, Pilon G, Dudonne S, Matamoros S, Varin TV et al. A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut 2015; 64: 872–883.

    Article  CAS  PubMed  Google Scholar 

  62. Neyrinck AM, Van Hee VF, Bindels LB, De Backer F, Cani PD, Delzenne NM . Polyphenol-rich extract of pomegranate peel alleviates tissue inflammation and hypercholesterolaemia in high-fat diet-induced obese mice: potential implication of the gut microbiota. Br J Nutr 2013; 109: 802–809.

    Article  CAS  PubMed  Google Scholar 

  63. Salminen S, van Loveren H . Probiotics and prebiotics: health claim substantiation. Microb Ecol Health Dis 2012; 18: 23.

    Google Scholar 

  64. EFSA Panel on Dietetic Products, Nutrition and Allergies. Scientific Opinion on the substantiation of a health claim related to ‘native chicory inulin’ and maintenance of normal defecation by increasing stool frequency pursuant to Article 13.5 of Regulation (EC) No 1924/2006. EFSA J 2015; 13: 3951.

    Article  CAS  Google Scholar 

  65. EFSA Panel on Dietetic Products, Nutrition and Allergies.. Guidance on the scientific requirements for health claims related to the immune system, the gastrointestinal tract and defence against pathogenic microorganisms. EFSA J 2016; 14: 23.

    Google Scholar 

  66. Duenas M, Munoz-Gonzalez I, Cueva C, Jimenez-Giron A, Sanchez-Patan F, Santos-Buelga C et al. A survey of modulation of gut microbiota by dietary polyphenols. Biomed Res Int 2015; 2015: 850902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Queipo-Ortuno MI, Boto-Ordonez M, Murri M, Gomez-Zumaquero JM, Clemente-Postigo M, Estruch R et al. Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers. Am J Clin Nutr 2012; 95: 1323–1334.

    Article  CAS  PubMed  Google Scholar 

  68. Chaplin A, Parra P, Laraichi S, Serra F, Palou A . Calcium supplementation modulates gut microbiota in a prebiotic manner in dietary obese mice. Mol Nutr Food Res 2016; 60: 468–480.

    Article  CAS  PubMed  Google Scholar 

  69. Khan MT, Browne WR, van Dijl JM, Harmsen HJ . How can Faecalibacterium prausnitzii employ riboflavin for extracellular electron transfer? Antioxid Redox Signal 2012; 17: 1433–1440.

    Article  CAS  PubMed  Google Scholar 

  70. Khan MT, Duncan SH, Stams AJ, van Dijl JM, Flint HJ, Harmsen HJ . The gut anaerobe Faecalibacterium prausnitzii uses an extracellular electron shuttle to grow at oxic-anoxic interphases. ISME J 2012; 6: 1578–1585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Clifford MN . Diet-derived phenols in plasma and tissues and their implications for health. Planta Med 2004; 70: 1103–1114.

    Article  CAS  PubMed  Google Scholar 

  72. Rigottier-Gois L . Dysbiosis in inflammatory bowel diseases: the oxygen hypothesis. ISME J 2013; 7: 1256–1261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Carmel-Harel O, Storz G . Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu Rev Microbiol 2000; 54: 439–461.

    Article  CAS  PubMed  Google Scholar 

  74. Jones SA, Gibson T, Maltby RC, Chowdhury FZ, Stewart V, Cohen PS et al. Anaerobic respiration of Escherichia coli in the mouse intestine. Infect Immun 2011; 79: 4218–4226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Winter SE, Winter MG, Xavier MN, Thiennimitr P, Poon V, Keestra AM et al. Host-derived nitrate boosts growth of E. coliin the inflamed gut. Science 2013; 339: 708–711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Winter SE, Thiennimitr P, Winter MG, Butler BP, Huseby DL, Crawford RW et al. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 2010; 467: 426–429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Neish AS, Jones RM . Redox signaling mediates symbiosis between the gut microbiota and the intestine. Gut Microbes 2014; 5: 250–253.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Schroeder BO, Wu Z, Nuding S, Groscurth S, Marcinowski M, Beisner J et al. Reduction of disulphide bonds unmasks potent antimicrobial activity of human beta-defensin 1. Nature 2011; 469: 419–423.

    Article  CAS  PubMed  Google Scholar 

  79. Espey MG . Role of oxygen gradients in shaping redox relationships between the human intestine and its microbiota. Free Radic Biol Med 2013; 55: 130–140.

    Article  CAS  PubMed  Google Scholar 

  80. Albenberg L, Esipova TV, Judge CP, Bittinger K, Chen J, Laughlin A et al. Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota. Gastroenterology 2014; 147: 1055–1063 e1058.

    Article  PubMed  Google Scholar 

  81. Van den Abbeele P, Van de Wiele T, Verstraete W, Possemiers S . The host selects mucosal and luminal associations of coevolved gut microorganisms: a novel concept. FEMS Microbiol Rev 2011; 35: 681–704.

    Article  CAS  PubMed  Google Scholar 

  82. Jusko WJ, Levy G . Absorption, metabolism, and excretion of riboflavin-5'-phosphate in man. J Pharm Sci 1967; 56: 58–62.

    Article  CAS  PubMed  Google Scholar 

  83. McCormick DB . Two interconnected B vitamins: riboflavin and pyridoxine. Physiol Rev 1989; 69: 1170–1198.

    Article  CAS  PubMed  Google Scholar 

  84. Zempleni J, Galloway JR, McCormick DB . Pharmacokinetics of orally and intravenously administered riboflavin in healthy humans. Am J Clin Nutr 1996; 63: 54–66.

    Article  CAS  PubMed  Google Scholar 

  85. Heinken A, Khan MT, Paglia G, Rodionov DA, Harmsen HJ, Thiele I . Functional metabolic map of Faecalibacterium prausnitzii, a beneficial human gut microbe. J Bacteriol 2014; 196: 3289–3302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Condo M, Posar A, Arbizzani A, Parmeggiani A . Riboflavin prophylaxis in pediatric and adolescent migraine. J Headache Pain 2009; 10: 361–365.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Schoenen J, Jacquy J, Lenaerts M . Effectiveness of high-dose riboflavin in migraine prophylaxis. A randomized controlled trial. Neurology 1998; 50: 466–470.

    Article  CAS  PubMed  Google Scholar 

  88. Boehnke C, Reuter U, Flach U, Schuh-Hofer S, Einhaupl KM, Arnold G . High-dose riboflavin treatment is efficacious in migraine prophylaxis: an open study in a tertiary care centre. Eur J Neurol 2004; 11: 475–477.

    Article  CAS  PubMed  Google Scholar 

  89. Sadaghian Sadabad M . Interaction between the gut and its microbiota in inflammatory bowel disease. PhD thesis, University of Groningen, Groningen, The Netherlands, 2015, ISBN 9789462990340.

  90. Lopez-Siles M, Khan TM, Duncan SH, Harmsen HJ, Garcia-Gil LJ, Flint HJ . Cultured representatives of two major phylogroups of human colonic Faecalibacterium prausnitzii can utilize pectin, uronic acids, and host-derived substrates for growth. Appl Environ Microbiol 2012; 78: 420–428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ploger S, Stumpff F, Penner GB, Schulzke JD, Gabel G, Martens H et al. Microbial butyrate and its role for barrier function in the gastrointestinal tract. Ann NY Acad Sci 2012; 1258: 52–59.

    Article  CAS  PubMed  Google Scholar 

  92. Rossi O, Khan MT, Schwarzer M, Hudcovic T, Srutkova D, Duncan SH et al. Faecalibacterium prausnitzii strain HTF-F and its extracellular polymeric matrix attenuate clinical parameters in DSS-induced colitis. PLoS One 2015; 10: e0123013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Willing B, Halfvarson J, Dicksved J, Rosenquist M, Jarnerot G, Engstrand L et al. Twin studies reveal specific imbalances in the mucosa-associated microbiota of patients with ileal Crohn's disease. Inflamm Bowel Dis 2009; 15: 653–660.

    Article  PubMed  Google Scholar 

  94. Winter SE, Baumler AJ . A breathtaking feat: to compete with the gut microbiota, Salmonella drives its host to provide a respiratory electron acceptor. Gut Microbes 2011; 2: 58–60.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Gill N, Ferreira RB, Antunes LC, Willing BP, Sekirov I, Al-Zahrani F et al. Neutrophil elastase alters the murine gut microbiota resulting in enhanced Salmonella colonization. PLoS One 2012; 7: e49646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Vong L, Pinnell LJ, Maattanen P, Yeung CW, Lurz E, Sherman PM . Selective enrichment of commensal gut bacteria protects against Citrobacter rodentium-induced colitis. Am J Physiol Gastrointest Liver Physiol 2015; 309: G181–G192.

    Article  CAS  PubMed  Google Scholar 

  97. Benus RF, van der Werf TS, Welling GW, Judd PA, Taylor MA, Harmsen HJ et al. Association between Faecalibacterium prausnitziiand dietary fibre in colonic fermentation in healthy human subjects. Br J Nutr 2010; 104: 693–700.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mr Kevin Prudence for assistance with editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R E Steinert.

Ethics declarations

Competing interests

RES and PW are employees of DSM Nutritional Products, Basel, Switzerland. The other authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Steinert, R., Sadaghian Sadabad, M., Harmsen, H. et al. The prebiotic concept and human health: a changing landscape with riboflavin as a novel prebiotic candidate?. Eur J Clin Nutr 70, 1348–1353 (2016). https://doi.org/10.1038/ejcn.2016.119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ejcn.2016.119

Further reading

Search

Quick links