Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Body Composition Highlights Review

Body composition during growth in children: limitations and perspectives of bioelectrical impedance analysis

Abstract

There are a number of differences between the body composition of children and adults. Body composition measurements in children are inherently challenging, because of the rapid growth-related changes in height, weight, fat-free mass (FFM) and fat mass (FM), but they are fundamental for the quality of the clinical follow-up. All body composition measurements for clinical use are 'indirect' methods based on assumptions that do not hold true in all situations or subjects. The clinician must primarily rely on two-compartment models (that is, FM and FFM) for routine determination of body composition of children. Bioelectrical impedance analysis (BIA) is promising as a bedside method, because of its low cost and ease of use. This paper gives an overview of the differences in body composition between adults and children in order to understand and appreciate the difference in body composition during growth. It further discusses the use and limitations of BIA/bioelectrical spectroscopy (BIA/BIS) in children. Single-frequency and multi-frequency BIA equations must be refined to better reflect the body composition of children of specific ethnicities and ages but will require development and cross-validation. In conclusion, recent studies suggest that BIA-derived body composition and phase angle measurements are valuable to assess nutritional status and growth in children, and may be useful to determine baseline measurements at hospital admission, and to monitor progress of nutrition treatment or change in nutritional status during hospitalization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. King SJ, Nyulasi IB, Strauss BJ, Kotsimbos T, Bailey M, Wilson JW . Fat-free mass depletion in cystic fibrosis: associated with lung disease severity but poorly detected by body mass index. Nutrition 2010; 26: 753–759.

    PubMed  Google Scholar 

  2. Ellis KJ, Shypailo RJ, Abrams SA, Wong WW . The reference child and adolescent models of body composition. A contemporary comparison. Ann N Y Acad Sci 2000; 904: 374–382.

    CAS  PubMed  Google Scholar 

  3. Furth SL . Growth and nutrition in children with chronic kidney disease. Adv Chronic Kidney Dis 2005; 12: 366–371.

    PubMed  Google Scholar 

  4. Pichard C, Kyle UG, Morabia A, Perrier A, Vermeulen B, Unger P . Nutritional assessment: Lean body mass depletion at hospital admission is associated with increased length of stay. Am J Clin Nutr 2004; 79: 613–618.

    CAS  PubMed  Google Scholar 

  5. Kyle UG, Pirlich M, Schuetz T, Lochs H, Pichard C . Increased length of hospital stay in underweight and overweight patients at hospital admission: A controlled population study. Clin Nutr 2005; 24: 133–142.

    PubMed  Google Scholar 

  6. Ionescu AA, Evans WD, Pettit RJ, Nixon LS, Stone MD, Shale DJ . Hidden depletion of fat-free mass and bone mineral density in adults with cystic fibrosis. Chest 2003; 124: 2220–2228.

    PubMed  Google Scholar 

  7. Thomson MA, Quirk P, Swanson CE, Thomas BJ, Holt TL, Francis PJ et al. Nutritional growth retardation is associated with defective lung growth in cystic fibrosis: a preventable determinant of progressive pulmonary dysfunction. Nutrition 1995; 11: 350–354.

    CAS  PubMed  Google Scholar 

  8. den Hoed MA, Pluijm SM, de Groot-Kruseman HA, Te Winkel ML, Fiocco M, van den Akker EL et al. The negative impact of underweight and weight loss on survival of children with acute lymphoblastic leukemia. Haematologica 2014 pii: haematol 2014: 110668.

    Google Scholar 

  9. Fomon SJ, Haschke F, Ziegler EE, Nelson SE . Body composition of reference children from birth to age 10 years. Am J Clin Nutr 1982; 35: 1169–1175.

    CAS  PubMed  Google Scholar 

  10. Boileau RA, Lohman TG, Slaughter MH, Ball TE, Going SB, Hendrix MK . Hydration of the fat-free body in children during maturation. Hum Biol 1984; 56: 651–666.

    CAS  PubMed  Google Scholar 

  11. Wells JC, Fuller NJ, Dewit O, Fewtrell MS, Elia M, Cole TJ . Four-component model of body composition in children: density and hydration of fat-free mass and comparison with simpler models. Am J Clin Nutr 1999; 69: 904–912.

    CAS  PubMed  Google Scholar 

  12. Siri WE . Body composition from fluid spaces and density: analysis of methods. In: Brozek J (ed). Techniques of measuring body composition. National Academy of Sciences, National Research Council: Washington, DC, USA, 1961; 223–244.

    Google Scholar 

  13. Deurenberg P, van der Kooy K, Paling A, Withagen P . Assessment of body composition in 8-11 year old children by bioelectrical impedance. Eur J Clin Nutr 1989; 43: 623–629.

    CAS  PubMed  Google Scholar 

  14. Collins CT, Reid J, Makrides M, Lingwood BE, McPhee AJ, Morris SA et al. Prediction of body water compartments in preterm infants by bioelectrical impedance spectroscopy. Eur J Clin Nutr 2013; 67: S47–S53.

    PubMed  Google Scholar 

  15. Xiong KY, He H, Zhang YM, Ni GX . Analyses of body composition charts among younger and older Chinese children and adolescents aged 5 to 18 years. BMC Public Health 2012; 12: 835.

    PubMed  PubMed Central  Google Scholar 

  16. Liu A, Byrne NM, Ma G, Nasreddine L, Trinidad TP, Kijboonchoo K et al. Validation of bioelectrical impedance analysis for total body water assessment against the deuterium dilution technique in Asian children. Eur J Clin Nutr 2011; 65: 1321–1327.

    CAS  PubMed  Google Scholar 

  17. Ellis KJ, Abrams SA, Wong WW . Body composition reference data for a young multiethnic female population. Appl Radiat Isot 1998; 49: 587–588.

    CAS  PubMed  Google Scholar 

  18. Goran MI, Nagy TR, Treuth MS, Trowbridge C, Dezenberg C, McGloin A et al. Visceral fat in white and African American prepubertal children. Am J Clin Nutr 1997; 65: 1703–1708.

    CAS  PubMed  Google Scholar 

  19. MacDonald AJ, Greig CA, Baracos V . The advantages and limitations of cross-sectional body composition analysis. Curr Opin Support Palliat Care 2011; 5: 342–349.

    PubMed  Google Scholar 

  20. Talma H, Chinapaw MJ, Bakker B, HiraSing RA, Terwee CB, Altenburg TM . Bioelectrical impedance analysis to estimate body composition in children and adolescents: a systematic review and evidence appraisal of validity, responsiveness, reliability and measurement error. Obes Rev 2013; 14: 895–905.

    CAS  PubMed  Google Scholar 

  21. Slaughter MH, Lohman TG, Boileau RA, Stillman RJ, Van Loan M, Horswill CA et al. Influence of maturation on relationship of skinfolds to body density: a cross-sectional study. Hum Biol 1984; 56: 681–689.

    CAS  PubMed  Google Scholar 

  22. Houtkooper LB, Lohman TG, Going SB, Hall MC . Validity of bioelectric impedance for body composition assessment in children. J Appl Physiol 1989; 66: 814–821.

    CAS  PubMed  Google Scholar 

  23. Lohman TG . Research progress in validation of laboratory methods of assessing body composition. Med Sci Sports Exerc 1984; 16: 596–605.

    CAS  PubMed  Google Scholar 

  24. Butte N, Heinz C, Hopkinson J, Wong W, Shypailo R, Ellis K . Fat mass in infants and toddlers: comparability of total body water, total body potassium, total body electrical conductivity, and dual-energy X-ray absorptiometry. J Pediatr Gastroenterol Nutr 1999; 29: 184–189.

    CAS  PubMed  Google Scholar 

  25. Lukaski HC . Method for assessment of human body composition: traditional and new. Am J Clin Nutr 1987; 46: 537–556.

    CAS  PubMed  Google Scholar 

  26. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM et al. Bioelectrical impedance analysis- Part II. Utilization in clinical practice. Clin Nutr 2004; 23: 1430–1453.

    PubMed  Google Scholar 

  27. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM et al. Bioelectrical impedance analysis - Part I. Review of principles and methods. Clin Nutr 2004; 23: 1226–1243.

    PubMed  Google Scholar 

  28. Moon JR . Body composition in athletes and sports nutrition: an examination of the bioimpedance analysis technique. Eur J Clin Nutr 2013; 67: S54–S59.

    PubMed  Google Scholar 

  29. Lazzer S, Agosti F, De Col A, Sartorio A . Development and cross-validation of prediction equations for estimating resting energy expenditure in severely obese Caucasian children and adolescents. Br J Nutr 2006; 96: 973–979.

    CAS  PubMed  Google Scholar 

  30. Kriemler S, Puder J, Zahner L, Roth R, Braun-Fahrlander C, Bedogni G . Cross-validation of bioelectrical impedance analysis for the assessment of body composition in a representative sample of 6- to 13-year-old children. Eur J Clin Nutr 2009; 63: 619–626.

    CAS  PubMed  Google Scholar 

  31. Gibson AL, Holmes JC, Desautels RL, Edmonds LB, Nuudi L . Ability of new octapolar bioimpedance spectroscopy analyzers to predict 4-component-model percentage body fat in Hispanic, black, and white adults. Am J Clin Nutr 2008; 87: 332–338.

    CAS  PubMed  Google Scholar 

  32. Lingwood BE . Bioelectrical impedance analysis for assessment of fluid status and body composition in neonates—the good, the bad and the unknown. Eur J Clin Nutr 2013; 67: S28–S33.

    PubMed  Google Scholar 

  33. Warner JT, Evans WD, Webb DK, Gregory JW . Pitfalls in the assessment of body composition in survivors of acute lymphoblastic leukaemia. Arch Dis Child 2004; 89: 64–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kyle U, Morabia A, Unger P, Slosman D, Pichard C . Contribution of body composition to nutritional assessment at hospital admission in 995 patients: a controlled population study. Br J Nutr 2001; 86: 725–731.

    CAS  PubMed  Google Scholar 

  35. Haroun D, Taylor SJ, Viner RM, Hayward RS, Darch TS, Eaton S et al. Validation of bioelectrical impedance analysis in adolescents across different ethnic groups. Obesity (Silver Spring) 2010; 18: 1252–1259.

    Google Scholar 

  36. Organ LW, Bradham GB, Gore DT, Lozier SL . Segmental bioelectrical impedance analysis: theory and application of a new technique. J Appl Physiol 1994; 77: 98–112.

    CAS  PubMed  Google Scholar 

  37. Zhu F, Schneditz D, Wang E, Levin NW . Dynamics of segmental extracellular volumes during changes in body position by bioimpedance analysis. J Appl Physiol 1998; 85: 497–504.

    CAS  PubMed  Google Scholar 

  38. Snijder MB, Kuyf BE, Deurenberg P . Effect of body build on the validity of predicted body fat from body mass index and bioelectrical impedance. Ann Nutr Metab 1999; 43: 277–285.

    CAS  PubMed  Google Scholar 

  39. Montagnese C, Williams JE, Haroun D, Siervo M, Fewtrell MS, Wells JC . Is a single bioelectrical impedance equation valid for children of wide ranges of age, pubertal status and nutritional status? Evidence from the 4-component model. Eur J Clin Nutr 2013; 67: S34–S39.

    PubMed  Google Scholar 

  40. Lohman TG, Caballero B, Himes JH, Davis CE, Stewart D, Houtkooper L et al. Estimation of body fat from anthropometry and bioelectrical impedance in Native American children. Int J Obes Relat Metab Disord 2000; 24: 982–988.

    CAS  PubMed  Google Scholar 

  41. Davies PS, Preece MA, Hicks CJ, Halliday D . The prediction of total body water using bioelectrical impedance in children and adolescents. Ann Hum Biol 1988; 15: 237–240.

    CAS  PubMed  Google Scholar 

  42. Danford LC, Schoeller DA, Kushner RF . Comparison of two bioelectrical impedance analysis models for total body water measurement in children. Ann Hum Biol 1992; 19: 603–607.

    CAS  PubMed  Google Scholar 

  43. Loveday SJ, Thompson JM, Mitchell EA . Bioelectrical impedance for measuring percentage body fat in young persons with Down syndrome: validation with dual-energy absorptiometry. Acta Paediatr 2012; 101: e491–e495.

    PubMed  Google Scholar 

  44. Haffner D, Schaefer F, Girard J, Ritz E, Mehls O . Metabolic clearance of recombinant human growth hormone in health and chronic renal failure. J Clin Invest 1994; 93: 1163–1171.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Pietrobelli A, Andreoli A, Cervelli V, Carbonelli MG, Peroni DG, De Lorenzo A . Predicting fat-free mass in children using bioimpedance analysis. Acta Diabetol 2003; 40: S212–S215.

    PubMed  Google Scholar 

  46. Tyrrell VJ, Richards G, Hofman P, Gillies GF, Robinson E, Cutfield WS . Foot-to-foot bioelectrical impedance analysis: a valuable tool for the measurement of body composition in children. Int J Obes Relat Metab Disord 2001; 25: 273–278.

    CAS  PubMed  Google Scholar 

  47. Schaefer F, Georgi M, Zieger A, Scharer K . Usefulness of bioelectric impedance and skinfold measurements in predicting fat-free mass derived from total body potassium in children. Pediatr Res 1994; 35: 617–624.

    CAS  PubMed  Google Scholar 

  48. Lukaski HC, Bolonchuk WW, Hall CB, Siders WA . Validation of tetrapolar bioelectrical impedance measurements to assess human body composition. J Appl Physiol 1986; 60: 1327–1332.

    CAS  PubMed  Google Scholar 

  49. Palchetti CZ, Patin RV, Machado DM, Szejnfeld VL, Succi RC, Oliveira FL . Body composition in prepubertal, HIV-infected children: a comparison of bioelectrical impedance analysis and dual-energy X-ray absorptiometry. Nutr Clin Pract 2013; 28: 247–252.

    PubMed  Google Scholar 

  50. Houtkooper LB, Going SB, Lohman TG, Roche AF, Van Loan M . Bioelectrical impedance estimation of fat-free body mass in children and youth: a cross-validation study. J Appl Physiol 1992; 72: 366–373.

    CAS  PubMed  Google Scholar 

  51. Kehoe SH, Krishnaveni GV, Lubree HG, Wills AK, Guntupalli AM, Veena SR et al. Prediction of body-fat percentage from skinfold and bio-impedance measurements in Indian school children. Eur J Clin Nutr 2011; 65: 1263–1270.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Reilly JJ, Wilson J, McColl JH, Carmichael M, Durnin JV . Ability of biolectric impedance to predict fat-free mass in prepubertal children. Pediatr Res 1996; 39: 176–179.

    CAS  PubMed  Google Scholar 

  53. Weststrate JA, Deurenberg P . Body composition in children: proposal for a method for calculating body fat percentage from total body density or skinfold-thickness measurements. Am J Clin Nutr 1989; 50: 1104–1115.

    CAS  PubMed  Google Scholar 

  54. Deurenberg P, Kusters CS, Smit HE . Assessment of body composition by bioelectrical impedance in children and young adults is strongly age-dependent. Eur J Clin Nutr 1990; 44: 261–268.

    CAS  PubMed  Google Scholar 

  55. Cordain L, Whicker RE, Johnson JE . Body composition determination in children using bioelectrical impedance. Growth Dev Aging 1988; 52: 37–40.

    CAS  PubMed  Google Scholar 

  56. Hewitt MJ, Going SB, Williams DP, Lohman TG . Hydration of the fat-free body mass in children and adults: implications for body composition assessment. Am J Physiol 1993; 265: E88–E95.

    CAS  PubMed  Google Scholar 

  57. Eisenkölbl J, Kartasurya M, Widhalm K . Underestimation of precentage fat mass measured by bioelectrical impedance analysis compared to dual energy X-ray absorptiometry method in obese children. Eur J Clin Nutr 2001; 55: 423–429.

    PubMed  Google Scholar 

  58. Kushner RF, Schoeller DA . Estimation of total body water by bioelectrical impedance analysis. Am J Clin Nutr 1986; 44: 417–424.

    CAS  PubMed  Google Scholar 

  59. Bandini LG, Vu DM, Must A, Dietz WH . Body fatness and bioelectrical impedance in non-obese pre-menarcheal girls: comparison to anthropometry and evaluation of predictive equations. Eur J Clin Nutr 1997; 51: 673–677.

    CAS  PubMed  Google Scholar 

  60. Kushner RF, Schoedler DA, Fjeld CR, Danford L . Is the impedance index (ht2/R) significant in predicting total body water? Am J Clin Nutr 1992; 56: 835–839.

    CAS  PubMed  Google Scholar 

  61. Cleary J, Daniells S, Okely AD, Batterham M, Nicholls J . Predictive validity of four bioelectrical impedance equations in determining percent fat mass in overweight and obese children. J Am Diet Assoc 2008; 108: 136–139.

    PubMed  Google Scholar 

  62. Deurenberg P, van der Kooy K, Leenen R, Westrate JA, Seidell JC . Sex and age specific prediction formulas for estimating body composition from bioelectrical impedance: a cross-validation study. Int J Obes Relat Metab Disord 1991; 15: 17–25.

    CAS  Google Scholar 

  63. Bell KL, Boyd RN, Walker JL, Stevenson RD, Davies PS . The use of bioelectrical impedance analysis to estimate total body water in young children with cerebral palsy. Clin Nutr 2012; 32: 579–584.

    PubMed  Google Scholar 

  64. Fjeld CR, Freundt-Thurne J, Schoeller DA . Total body water measured by 18-O dilution and bioelectrical impedance in well and malnourished children. Pediatr Res 1990; 27: 98–102.

    CAS  PubMed  Google Scholar 

  65. Goran MI, Kaskoun MC, Carpenter WH, Poehlman ET, Ravussin E, Fontvieille AM . Estimating body composition of young children by using bioelectrical resistance. J Appl Physiol 1993; 75: 1776–1780.

    CAS  PubMed  Google Scholar 

  66. Ellis K, Shypailo R, Wong W . Measurement of body water by multifrequency bioelectrical impedance spectroscopy in a multiethnic pediatric population. Am J Clin Nutr 1999; 70: 847–853.

    CAS  PubMed  Google Scholar 

  67. Fors H, Gelander L, Bjarnason R, Albertsson-Wikland K, Bosaeus I . Body composition, as assessed by bioelectrical impedance spectroscopy and dual-energy X-ray absorptiometry, in a healthy paediatric population. Acta Paediatr 2002; 91: 755–760.

    CAS  PubMed  Google Scholar 

  68. Young RE, Sinha DP . Bioelectrical-impedance analysis as a measure of body composition in a West Indian population. Am J Clin Nutr 1992; 55: 1045–1050.

    CAS  PubMed  Google Scholar 

  69. Wu YT, Nielsen DH, Cassady SL, Cook JS, Janz KF, Hansen JR . Cross-validation of bioelectrical impedance analysis of body composition in children and adolescents. Phys Ther 1993; 73: 320–328.

    CAS  PubMed  Google Scholar 

  70. Resende CM, Camelo Junior JS, Vieira MN, Ferriolli E, Pfrimer K, Perdona GS et al. Body composition measures of obese adolescents by the deuterium oxide dilution method and by bioelectrical impedance. Braz J Med Biol Res 2011; 44: 1164–1170.

    CAS  PubMed  Google Scholar 

  71. Goldfield GS, Cloutier P, Mallory R, Prud'homme D, Parker T, Doucet E . Validity of foot-to-foot bioelectrical impedance analysis in overweight and obese children and parents. J Sports Med Phys Fitness 2006; 46: 447–453.

    CAS  PubMed  Google Scholar 

  72. Lazzer S, Boirie Y, Meyer M, Vermorel M . Evaluation of two foot-to-foot bioelectrical impedance analysers to assess body composition in overweight and obese adolescents. Br J Nutr 2003; 90: 987–992.

    CAS  PubMed  Google Scholar 

  73. Hosking J, Metcalf BS, Jeffery AN, Voss LD, Wilkin TJ . Validation of foot-to-foot bioelectrical impedance analysis with dual-energy X-ray absorptiometry in the assessment of body composition in young children: the EarlyBird cohort. Br J Nutr 2006; 96: 1163–1168.

    CAS  PubMed  Google Scholar 

  74. Prins M, Hawkesworth S, Wright A, Fulford AJ, Jarjou LM, Prentice AM et al. Use of bioelectrical impedance analysis to assess body composition in rural Gambian children. Eur J Clin Nutr 2008; 62: 1065–1074.

    CAS  PubMed  Google Scholar 

  75. Isjwara RI, Lukito W, Schultink JW . Comparison of body compositional indices assessed by underwater weighing, bioelectrical impedance and anthropometry in Indonesian adolescent girls. Asia Pac J Clin Nutr 2007; 16: 641–648.

    PubMed  Google Scholar 

  76. Erceg DN, Dieli-Conwright CM, Rossuello AE, Jensky NE, Sun S, Schroeder ET . The Stayhealthy bioelectrical impedance analyzer predicts body fat in children and adults. Nutr Res 2010; 30: 297–304.

    CAS  PubMed  Google Scholar 

  77. Fuller NJ, Fewtrell MS, Dewit O, Elia M, Wells JC . Segmental bioelectrical impedance analysis in children aged 8-12 y: 2. The assessment of regional body composition and muscle mass. Int J Obes Relat Metab Disord 2002; 26: 692–700.

    CAS  PubMed  Google Scholar 

  78. Fuller NJ, Fewtrell MS, Dewit O, Elia M, Wells JC . Segmental bioelectrical impedance analysis in children aged 8-12 y: 1. The assessment of whole-body composition. Int J Obes Relat Metab Disord 2002; 26: 684–691.

    CAS  PubMed  Google Scholar 

  79. Zhu F, Schneditz D, Levin NW . Sum of segmental bioimpedance analysis during ultrafiltration and hemodialysis reduces sensitivity to changes in body position. Kidney Int 1999; 56: 692–699.

    CAS  PubMed  Google Scholar 

  80. Barbosa-Silva MC, Barros AJ, Wang J, Heymsfield SB, Pierson RN Jr . Bioelectrical impedance analysis: population reference values for phase angle by age and sex. Am J Clin Nutr 2005; 82: 49–52.

    CAS  PubMed  Google Scholar 

  81. Bosy-Westphal A, Danielzik S, Dorhofer RP, Later W, Wiese S, Muller MJ . Phase angle from bioelectrical impedance analysis: population reference values by age, sex, and body mass index. JPEN J Parenter Enteral Nutr 2006; 30: 309–316.

    PubMed  Google Scholar 

  82. Piccoli A, Rossi B, Pillon L, Bucciante G . A new method for monitoring body fluid variation by bioimpedance analysis: The RXc graph. Kidney Int 1994; 46: 534–539.

    CAS  PubMed  Google Scholar 

  83. Guida B, De Nicola L, Trio R, Pecoraro P, Iodice C, Memoli B . Comparison of vector and conventional bioelectrical impedance analysis in the optimal dry weight prescription in hemodialysis. Am J Nephrol. 2000; 20: 311–318.

    CAS  PubMed  Google Scholar 

  84. Piccoli A, Brunani A, Savia G, Pillon L, Favaro E, Berselli ME et al. Discriminating between body fat and fluid changes in the obese adult using bioimpedance vector analysis. Int J Obes 1998; 22: 97–104.

    CAS  Google Scholar 

  85. Chertow GM, Jacobs D, Lazarus JM . Phase angle predicts survival in hemodialysis patients. J Ren Nutr 1997; 7: 204–207.

    Google Scholar 

  86. Gupta D, Lis CG, Dahlk SL, King J, Vashi PG, Grutsch JF et al. The relationship between bioelectrical impedance phase angle and subjective global assessment in advanced colorectal cancer. Nutr J 2008; 7: 19.

    PubMed  PubMed Central  Google Scholar 

  87. Ott M, Fischer H, Polat H, Helm EB, Frenz M, Caspary W et al. Bioelectrical impedance analysis as a predictor of survival in patients with human immunodeficiency virus infection. J Acquir Immune Defic Syndr Hum Retrovirol 1995; 9: 20–25.

    CAS  PubMed  Google Scholar 

  88. Selberg O, Selberg D . Norms and correlates of bioimpedance phase angle in healthy human subjects, hospitalized patients, and patients with liver cirrhosis. Eur J Appl Physiol 2002; 86: 509–516.

    CAS  PubMed  Google Scholar 

  89. Wirth R, Volkert D, Rosler A, Sieber CC, Bauer JM . Bioelectric impedance phase angle is associated with hospital mortality of geriatric patients. Arch Gerontol Geriatr 2010; 51: 290–294.

    CAS  PubMed  Google Scholar 

  90. Baumgartner RN, Chumlea WC, Roche AF . Bioelectric impedance phase angle and body compositon. Am J Clin Nutr 1988; 48: 16–23.

    CAS  PubMed  Google Scholar 

  91. Shime N, Ashida H, Chihara E, Kageyama K, Katoh Y, Yamagishi M et al. Bioelectrical impedance analysis for assessment of severity of illness in pediatric patients after heart surgery. Crit Care Med 2002; 30: 518–520.

    PubMed  Google Scholar 

  92. Azevedo ZM, Moore DC, de Matos FA, Fonseca VM, Peixoto MV, Gaspar-Elsas MI et al. Bioelectrical impedance parameters in critically ill children: Importance of reactance and resistance. Clin Nutr 2013; 32: 824–829.

    PubMed  Google Scholar 

  93. Farias CL, Campos DJ, Bonfin CM, Vilela RM . Phase angle from BIA as a prognostic and nutritional status tool for children and adolescents undergoing hematopoietic stem cell transplantation. Clin Nutr 2013; 32: 420–425.

    PubMed  Google Scholar 

  94. Moissl U, Arias-Guillen M, Wabel P, Fontsere N, Carrera M, Campistol JM et al. Bioimpedance-guided fluid management in hemodialysis patients. Clin J Am Soc Nephrol 2013; 8: 1575–1582.

    PubMed  PubMed Central  Google Scholar 

  95. Earthman C, Traughber D, Dobratz J, Howell W . Bioimpedance spectroscopy for clinical assessment of fluid distribution and body cell mass. Nutr Clin Pract 2007; 22: 389–405.

    PubMed  Google Scholar 

  96. Moissl UM, Wabel P, Chamney PW, Bosaeus I, Levin NW, Bosy-Westphal A et al. Body fluid volume determination via body composition spectroscopy in health and disease. Physiol Meas 2006; 27: 921–933.

    PubMed  Google Scholar 

  97. Pintauro SJ, Nagy TR, Duthie CM, Goran MI . Cross-calibration of fat and lean measurements by dual-energy X-ray absorptiometry to pig carcass analysis in the pediatric body weight range. Am J Clin Nutr 1996; 63: 293–298.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was internally funded by Baylor College of Medicine.

Author Contributions

UGK conceived and carried out the review of literature and drafted the manuscript. JAC-B, CPE and CP participated in the drafting of the manuscript. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J A Coss-Bu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on European Journal of Clinical Nutrition website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kyle, U., Earthman, C., Pichard, C. et al. Body composition during growth in children: limitations and perspectives of bioelectrical impedance analysis. Eur J Clin Nutr 69, 1298–1305 (2015). https://doi.org/10.1038/ejcn.2015.86

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ejcn.2015.86

This article is cited by

Search

Quick links