Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The effect of fruit and vegetable intake on the development of lung cancer: a meta-analysis of 32 publications and 20 414 cases

Abstract

Background/Objectives:

Quantification of the association between the intake of vegetables and fruits and the risk of lung cancer is controversial. Thus, we conducted a meta-analysis to assess the relationship between vegetables and fruits and lung cancer risk.

Subjects/Methods:

Pertinent studies were identified by a search in PubMed and Web of Knowledge. Random-effects models were used to calculate summary relative risks (RR) and the corresponding 95% confidence intervals (CI). Publication bias was estimated using Begg’s test.

Results:

Finally, 30 articles with 37 studies comprising of 20 075 lung cancer cases for vegetables intake with lung cancer risk and 31 articles with 38 studies comprising of 20 213 lung cancer cases for fruits intake with lung cancer risk were included in this meta-analysis. The combined results showed that there were significant associations between vegetables and fruits intake and lung cancer risk. The pooled RR were 0.74 (95% CI: 0.67, 0.82) for vegetables and 0.80 (95% CI: 0.74, 0.88) for fruits. Significant association was found in females on vegetables intake and lung cancer but not in males. The association was also stronger in females than males on fruits intake and lung cancer risk. No publication bias was detected.

Conclusions:

Our analysis indicated that intake of vegetables and fruits may have a protective effect on lung cancer, and the associations were stronger in females. As the potential biases and confounders could not be ruled out completely in this meta-analysis, further studies are needed.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D . Global cancer statistics. CA Cancer J Clin 2011; 61: 69–90.

    Article  PubMed  Google Scholar 

  2. Wang J, Li C, Tao H, Cheng Y, Han L, Li X et al. Statin use and risk of lung cancer: a meta-analysis of observational studies and randomized controlled trials. PloS One 2013; 8: e77950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li H, Hao X, Zhang W, Wei Q, Chen K . The hOGG1 Ser326Cys polymorphism and lung cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev 2008; 17: 1739–1745.

    Article  PubMed  Google Scholar 

  4. Lu X, Ke J, Luo X, Zhu Y, Zou L, Li H et al. The SNP rs402710 in 5p15.33 is associated with lung cancer risk: a replication study in Chinese population and a meta-analysis. PloS One 2013; 8: e76252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kim CH, Lee YC, Hung RJ, McNallan SR, Cote ML, Lim WY et al. Exposure to secondhand tobacco smoke and lung cancer by histological type: a pooled analysis of the International Lung Cancer Consortium (ILCCO). Int J Cancer 2014; 135: 1918–1930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Druesne-Pecollo N, Keita Y, Touvier M, Chan DS, Norat T, Hercberg S et al. Alcohol drinking and second primary cancer risk in patients with upper aerodigestive tract cancers: a systematic review and meta-analysis of observational studies. Cancer Epidemiol Biomarkers Prev 2014; 23: 324–331.

    Article  PubMed  Google Scholar 

  7. Luo J, Shen L, Zheng D . Association between vitamin C intake and lung cancer: a dose-response meta-analysis. Scientific Rep 2014; 4: 6161.

    Article  CAS  Google Scholar 

  8. Norat T, Aune D, Chan D, Romaguera D . Fruits and vegetables: updating the epidemiologic evidence for the WCRF/AICR lifestyle recommendations for cancer prevention. Cancer Treat Res 2014; 159: 35–50.

    Article  CAS  PubMed  Google Scholar 

  9. Wiseman M . The second World Cancer Research Fund/American Institute for Cancer Research expert report. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Proc Nutr Soc 2008; 67: 253–256.

    Article  PubMed  Google Scholar 

  10. Han B, Li X, Yu T . Cruciferous vegetables consumption and the risk of ovarian cancer: a meta-analysis of observational studies. Diagn Pathol 2014; 9: 7.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Li B, Jiang G, Zhang G, Xue Q, Zhang H, Wang C et al. Intake of vegetables and fruit and risk of esophageal adenocarcinoma: a meta-analysis of observational studies. Eur J Nutr 2014; 53: 1511–1521.

    Article  PubMed  Google Scholar 

  12. Tse G, Eslick GD . Cruciferous vegetables and risk of colorectal neoplasms: a systematic review and meta-analysis. Nutr Can 2014; 66: 128–139.

    Article  CAS  Google Scholar 

  13. Liu J, Wang J, Leng Y, Lv C . Intake of fruit and vegetables and risk of esophageal squamous cell carcinoma: a meta-analysis of observational studies. Int J Cancer 2013; 133: 473–485.

    Article  CAS  PubMed  Google Scholar 

  14. DerSimonian R, Laird N . Meta-analysis in clinical trials. Control Clin Trials 1986; 7: 177–188.

    Article  CAS  PubMed  Google Scholar 

  15. Higgins JP, Thompson SG . Quantifying heterogeneity in a meta-analysis. Stat Med 2002; 21: 1539–1558.

    Article  PubMed  Google Scholar 

  16. Higgins JP, Thompson SG . Controlling the risk of spurious findings from meta-regression. Stat Med 2004; 23: 1663–1682.

    Article  PubMed  Google Scholar 

  17. Begg CB . A comparison of methods to detect publication bias in meta-analysis by P Macaskill, S D Walter and L Irwig, Statistics in Medicine, 2001; 20:641-654. Stat Med 2002; 21: 1803 author reply 1804.

    Article  PubMed  Google Scholar 

  18. Tobias A . Assessing the in fluence of a single study in the meta-analysis estimate. Stata Tech Bull 1999; 47: 15–17.

    Google Scholar 

  19. Agudo A, Esteve MG, Pallares C, Martinez-Ballarin I, Fabregat X, Malats N et al. Vegetable and fruit intake and the risk of lung cancer in women in Barcelona, Spain. Eur J Cancer 1997; 33: 1256–1261.

    Article  CAS  PubMed  Google Scholar 

  20. Aune D, De Stefani E, Ronco A, Boffetta P, Deneo-Pellegrini H, Acosta G et al. Fruits, vegetables and the risk of cancer: a multisite case-control study in Uruguay. Asian Pac J Cancer Prev 2009; 10: 419–428.

    PubMed  Google Scholar 

  21. Axelsson G, Liljeqvist T, Andersson L, Bergman B, Rylander R . Dietary factors and lung cancer among men in west Sweden. Int J Epidemiol 1996; 25: 32–39.

    Article  CAS  PubMed  Google Scholar 

  22. Axelsson G, Rylander R . Diet as risk for lung cancer: a Swedish case-control study. Nutr Cancer 2002; 44: 145–151.

    Article  PubMed  Google Scholar 

  23. Buchner FL, Bueno-de-Mesquita HB, Ros MM, Overvad K, Dahm CC, Hansen L et al. Variety in fruit and vegetable consumption and the risk of lung cancer in the European prospective investigation into cancer and nutrition. Cancer Epidemiol Biomarkers Prev 2010; 19: 2278–2286.

    Article  PubMed  Google Scholar 

  24. Chiu YL, Wang XR, Qiu H, Yu IT . Risk factors for lung cancer: a case-control study in Hong Kong women. Cancer Causes Control 2010; 21: 777–785.

    Article  PubMed  Google Scholar 

  25. Dorgan JF, Ziegler RG, Schoenberg JB, Hartge P, McAdams MJ, Falk RT et al. Race and sex differences in associations of vegetables, fruits, and carotenoids with lung cancer risk in New Jersey (United States). Cancer Causes Control 1993; 4: 273–281.

    CAS  PubMed  Google Scholar 

  26. Dosil-Diaz O, Ruano-Ravina A, Gestal-Otero JJ, Barros-Dios JM . Consumption of fruit and vegetables and risk of lung cancer: a case-control study in Galicia, Spain. Nutrition 2008; 24: 407–413.

    Article  PubMed  Google Scholar 

  27. Feskanich D, Ziegler RG, Michaud DS, Giovannucci EL, Speizer FE, Willett WC et al. Prospective study of fruit and vegetable consumption and risk of lung cancer among men and women. J Nat Cancer Inst 2000; 92: 1812–1823.

    Article  CAS  PubMed  Google Scholar 

  28. Fontham ET, Pickle LW, Haenszel W, Correa P, Lin YP, Falk RT . Dietary vitamins A and C and lung cancer risk in Louisiana. Cancer 1988; 62: 2267–2273.

    Article  CAS  PubMed  Google Scholar 

  29. Fraser GE, Beeson WL, Phillips RL . Diet and lung cancer in California Seventh-day Adventists. Am J Epidemiol 1991; 133: 683–693.

    Article  CAS  PubMed  Google Scholar 

  30. Galeone C, Negri E, Pelucchi C, La Vecchia C, Bosetti C, Hu J . Dietary intake of fruit and vegetable and lung cancer risk: a case-control study in Harbin, northeast China. Ann Oncol 2007; 18: 388–392.

    Article  CAS  PubMed  Google Scholar 

  31. Hu J, Johnson KC, Mao Y, Xu T, Lin Q, Wang C et al. A case-control study of diet and lung cancer in northeast China. Int J Cancer 1997; 71: 924–931.

    Article  CAS  PubMed  Google Scholar 

  32. Jansen MC, Bueno-de-Mesquita HB, Rasanen L, Fidanza F, Nissinen AM, Menotti A et al. Cohort analysis of fruit and vegetable consumption and lung cancer mortality in European men. Int J Cancer 2001; 92: 913–918.

    Article  CAS  PubMed  Google Scholar 

  33. Jansen MC, Bueno-de-Mesquita HB, Feskens EJ, Streppel MT, Kok FJ, Kromhout D . Quantity and variety of fruit and vegetable consumption and cancer risk. Nutr Cancer 2004; 48: 142–148.

    Article  PubMed  Google Scholar 

  34. Ko YC, Lee CH, Chen MJ, Huang CC, Chang WY, Lin HJ et al. Risk factors for primary lung cancer among non-smoking women in Taiwan. Int J Epidemiol 1997; 26: 24–31.

    Article  CAS  PubMed  Google Scholar 

  35. Lim WY, Chuah KL, Eng P, Leong SS, Lim E, Lim TK et al. Meat consumption and risk of lung cancer among never-smoking women. Nutr Cancer 2011; 63: 850–859.

    Article  PubMed  Google Scholar 

  36. Liu Y, Sobue T, Otani T, Tsugane S . Vegetables, fruit consumption and risk of lung cancer among middle-aged Japanese men and women: JPHC study. Cancer Causes Control 2004; 15: 349–357.

    Article  CAS  PubMed  Google Scholar 

  37. Marchand JL, Luce D, Goldberg P, Bugel I, Salomon C, Goldberg M . Dietary factors and the risk of lung cancer in New Caledonia (South Pacific). Nutr Cancer 2002; 42: 18–24.

    Article  PubMed  Google Scholar 

  38. Neuhouser ML, Patterson RE, Thornquist MD, Omenn GS, King IB, Goodman GE . Fruits and vegetables are associated with lower lung cancer risk only in the placebo arm of the beta-carotene and retinol efficacy trial (CARET). Cancer Epidemiol Biomarkers Prev 2003; 12: 350–358.

    CAS  PubMed  Google Scholar 

  39. Nyberg F, Agrenius V, Svartengren K, Svensson C, Pershagen G . Dietary factors and risk of lung cancer in never-smokers. Int J Cancer 1998; 78: 430–436.

    Article  CAS  PubMed  Google Scholar 

  40. Ocke MC, Bueno-de-Mesquita HB, Feskens EJ, van Staveren WA, Kromhout D . Repeated measurements of vegetables, fruits, beta-carotene, and vitamins C and E in relation to lung cancer. The Zutphen study. Am J Epidemiol 1997; 145: 358–365.

    Article  CAS  PubMed  Google Scholar 

  41. Rylander R, Axelsson G . Lung cancer risks in relation to vegetable and fruit consumption and smoking. Int J Cancer 2006; 118: 739–743.

    Article  CAS  PubMed  Google Scholar 

  42. Seow A, Poh WT, Teh M, Eng P, Wang YT, Tan WC et al. Diet, reproductive factors and lung cancer risk among Chinese women in Singapore: evidence for a protective effect of soy in nonsmokers. Int J Cancer 2002; 97: 365–371.

    Article  CAS  PubMed  Google Scholar 

  43. Shibata A, Paganini-Hill A, Ross RK, Henderson BE . Intake of vegetables, fruits, beta-carotene, vitamin C and vitamin supplements and cancer incidence among the elderly: a prospective study. Br J Cancer 1992; 66: 673–679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. De Stefani E, Brennan P, Ronco A, Fierro L, Correa P, Boffetta P et al. Food groups and risk of lung cancer in Uruguay. Lung Cancer 2002; 38: 1–7.

    Article  PubMed  Google Scholar 

  45. Steinmetz KA, Potter JD, Folsom AR . Vegetables, fruit, and lung cancer in the Iowa Women's Health Study. Cancer Res 1993; 53: 536–543.

    CAS  PubMed  Google Scholar 

  46. Takata Y, Xiang YB, Yang G, Li H, Gao J, Cai H et al. Intakes of fruits, vegetables, and related vitamins and lung cancer risk: results from the Shanghai Men's Health Study (2002-2009). Nutr Cancer 2013; 65: 51–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tang L, Zirpoli GR, Jayaprakash V, Reid ME, McCann SE, Nwogu CE et al. Cruciferous vegetable intake is inversely associated with lung cancer risk among smokers: a case-control study. BMC Cancer 2010; 10: 162.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Voorrips LE, Goldbohm RA, Verhoeven DT, van Poppel GA, Sturmans F, Hermus RJ et al. Vegetable and fruit consumption and lung cancer risk in the Netherlands cohort study on diet and cancer. Cancer Causes Control 2000; 11: 101–115.

    Article  CAS  PubMed  Google Scholar 

  49. Wright ME, Mayne ST, Swanson CA, Sinha R, Alavanja MC . Dietary carotenoids, vegetables, and lung cancer risk in women: the Missouri women's health study (United States). Cancer Causes Control 2003; 14: 85–96.

    Article  PubMed  Google Scholar 

  50. Wright ME, Park Y, Subar AF, Freedman ND, Albanes D, Hollenbeck A et al. Intakes of fruit, vegetables, and specific botanical groups in relation to lung cancer risk in the NIH-AARP diet and health study. Am J Epidemiol 2008; 168: 1024–1034.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Nyberg F, Hou SM, Pershagen G, Lambert B . Dietary fruit and vegetables protect against somatic mutation in vivo, but low or high intake of carotenoids does not. Carcinogenesis 2003; 24: 689–696.

    Article  CAS  PubMed  Google Scholar 

  52. Wettasinghe M, Bolling B, Plhak L, Xiao H, Parkin K . Phase II enzyme-inducing and antioxidant activities of beetroot (Beta vulgaris L.) extracts from phenotypes of different pigmentation. J Agri Food Chem 2002; 50: 6704–6709.

    Article  CAS  Google Scholar 

  53. Xiao D, Vogel V, Singh SV . Benzyl isothiocyanate-induced apoptosis in human breast cancer cells is initiated by reactive oxygen species and regulated by Bax and Bak. Mol Cancer Ther 2006; 5: 2931–2945.

    Article  CAS  PubMed  Google Scholar 

  54. Ziegler RG . Vegetables, fruits, and carotenoids and the risk of cancer. Am J Clin Nutr 1991; 53: 251S–259S.

    Article  CAS  PubMed  Google Scholar 

  55. van't Veer P, Jansen MC, Klerk M, Kok FJ . Fruits and vegetables in the prevention of cancer and cardiovascular disease. Public Health Nutr 2000; 3: 103–107.

    Article  CAS  PubMed  Google Scholar 

  56. Knekt P, Jarvinen R, Seppanen R, Rissanen A, Aromaa A, Heinonen OP et al. Dietary antioxidants and the risk of lung cancer. Am J Epidemiol 1991; 134: 471–479.

    Article  CAS  PubMed  Google Scholar 

  57. Prentice RL . Dietary assessment and the reliability of nutritional epidemiology reports. Lancet 2003; 362: 182–183.

    Article  PubMed  Google Scholar 

  58. Willett WC, Sampson L, Stampfer MJ, Rosner B, Bain C, Witschi J et al. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol 1985; 122: 51–65.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Zhang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Qin, S., Zhang, T. et al. The effect of fruit and vegetable intake on the development of lung cancer: a meta-analysis of 32 publications and 20 414 cases. Eur J Clin Nutr 69, 1184–1192 (2015). https://doi.org/10.1038/ejcn.2015.64

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ejcn.2015.64

This article is cited by

Search

Quick links