Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lipids and cardiovascular/metabolic health

A combination of palm oil tocotrienols and citrus peel polymethoxylated flavones does not influence elevated LDL cholesterol and high-sensitivity C-reactive protein levels

Abstract

Background/Objectives:

Lipid-lowering and anti-inflammatory effects have been individually described for tocotrienols (TTs) and polymethoxylated flavones (PMFs). This study investigated low-density lipoprotein-cholesterol (LDL-C)- and high-sensitivity C-reactive protein (hsCRP)-reducing effects of combined TT–PMF treatment in low doses in hypercholesterolemic individuals with subclinical inflammation.

Subjects/Methods:

In the double-blind, placebo-controlled study, 240 Caucasians with LDL-C 3.36 mmol/l and hsCRP 1 mg/l were enrolled and randomized into group S1 (12 mg/day TT and 103 mg/day PMF), group S2 (27 mg/day TT and 32 mg/day PMF) or placebo.

Results:

Twenty-three subjects dropped out of the study, 13 were excluded from the analysis because of lack of compliance. A total of 204 subjects per-protocol analysis were included. After 12 weeks of treatment, no significant differences in LDL-C levels (primary outcome) were observed between groups. LDL-C levels significantly decreased in all intervention groups (S1: −5.2%, S2: −4.8% and P: −4.2%). Total cholesterol and hsCRP (secondary outcome) did not change significantly.

Conclusions:

PMF–TT supplements had no effect beyond that of placebo on elevated LDL-C and hsCRP levels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Reiner Z, Catapano AL, De Backer G, Graham I, Taskinen MR, Wiklund O et al. ESC/EAS Guidelines for the management of dyslipidaemias: the Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Eur Heart J 2011; 32: 1769–1818.

    Article  Google Scholar 

  2. Genest J . C-reactive protein: risk factor, biomarker and/or therapeutic target? Can J Cardiol 2010; 26: 41A–44A.

    Article  CAS  Google Scholar 

  3. Li J, Fang C . C-reactive protein is not only an inflammatory marker but also a direct cause of cardiovascular diseases. Med Hypotheses 2004; 62: 499–506.

    Article  CAS  Google Scholar 

  4. Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto AM Jr, Kastelein JJ et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med 2008; 359: 2195–2207.

    Article  CAS  Google Scholar 

  5. Vasanthi HR, Parameswari RP, Das DK . Tocotrienols and its role in cardiovascular health—a lead for drug design. Curr Pharm Des 2011; 17: 2170–2175.

    Article  CAS  Google Scholar 

  6. Qureshi AA, Qureshi N, Wright JJ, Shen Z, Kramer G, Gapor A et al. Lowering of serum cholesterol in hypercholesterolemic humans by tocotrienols (palmvitee). Am J Clin Nutr 1991; 53: 1021S–1026S.

    Article  CAS  Google Scholar 

  7. Qureshi AA, Sami SA, Salser WA, Khan FA . Synergistic effect of tocotrienol-rich fraction (TRF(25)) of rice bran and lovastatin on lipid parameters in hypercholesterolemic humans. J Nutr Biochem 2001; 12: 318–329.

    Article  CAS  Google Scholar 

  8. Qureshi AA, Sami SA, Salser WA, Khan FA . Dose-dependent suppression of serum cholesterol by tocotrienol-rich fraction (TRF25) of rice bran in hypercholesterolemic humans. Atherosclerosis 2002; 161: 199–207.

    Article  CAS  Google Scholar 

  9. Tan DT, Khor HT, Low WH, Ali A, Gapor A . Effect of a palm-oil-vitamin E concentrate on the serum and lipoprotein lipids in humans. Am J Clin Nutr 1991; 53: 1027S–1030S.

    Article  CAS  Google Scholar 

  10. Zaiden N, Yap WN, Ong S, Xu CH, Teo VH, Chang CP et al. Gamma delta tocotrienols reduce hepatic triglyceride synthesis and VLDL secretion. J Atheroscler Thromb 2010; 17: 1019–1032.

    Article  CAS  Google Scholar 

  11. Elson CE, Qureshi AA . Coupling the cholesterol- and tumor-suppressive actions of palm oil to the impact of its minor constituents on 3-hydroxy-3-methylglutaryl coenzyme A reductase activity. Prostaglandins Leukot Essent Fatty Acids 1995; 52: 205–207.

    Article  CAS  Google Scholar 

  12. Parker RA, Pearce BC, Clark RW, Gordon DA, Wright JJ . Tocotrienols regulate cholesterol production in mammalian cells by post-transcriptional suppression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. J Biol Chem 1993; 268: 11230–11238.

    CAS  PubMed  Google Scholar 

  13. Qureshi AA, Pearce BC, Nor RM, Gapor A, Peterson DM, Elson CE . Dietary alpha-tocopherol attenuates the impact of gamma-tocotrienol on hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in chickens. J Nutr 1996; 126: 389–394.

    Article  CAS  Google Scholar 

  14. Mensink RP, van Houwelingen AC, Kromhout D, Hornstra G . A vitamin E concentrate rich in tocotrienols had no effect on serum lipids, lipoproteins, or platelet function in men with mildly elevated serum lipid concentrations. Am J Clin Nutr 1999; 69: 213–219.

    Article  CAS  Google Scholar 

  15. Mustad VA, Smith CA, Ruey PP, Edens NK, DeMichele SJ . Supplementation with 3 compositionally different tocotrienol supplements does not improve cardiovascular disease risk factors in men and women with hypercholesterolemia. Am J Clin Nutr 2002; 76: 1237–1243.

    Article  CAS  Google Scholar 

  16. O'Byrne D, Grundy S, Packer L, Devaraj S, Baldenius K, Hoppe PP et al. Studies of LDL oxidation following alpha-, gamma-, or delta-tocotrienyl acetate supplementation of hypercholesterolemic humans. Free Radic Biol Med 2000; 29: 834–845.

    Article  CAS  Google Scholar 

  17. Rasool AH, Yuen KH, Yusoff K, Wong AR, Rahman AR . Dose dependent elevation of plasma tocotrienol levels and its effect on arterial compliance, plasma total antioxidant status, and lipid profile in healthy humans supplemented with tocotrienol rich vitamin E. J Nutr Sci Vitaminol 2006; 52: 473–478.

    Article  CAS  Google Scholar 

  18. Tomeo AC, Geller M, Watkins TR, Gapor A, Bierenbaum ML . Antioxidant effects of tocotrienols in patients with hyperlipidemia and carotid stenosis. Lipids 1995; 30: 1179–1183.

    Article  CAS  Google Scholar 

  19. Wahlqvist ML, Krivokuca-Bogetic Z, Lo S, Hage B, Smith R, Lukito W . Differential serum responses of tocopherols and tocotrienols during vitamin supplementation in hypercholesterolaemic individuals without change in coronary risk factors. Nutr Res 1992; 12: S181–S201.

    Article  Google Scholar 

  20. Assini JM, Mulvihill EE, Huff MW . Citrus flavonoids and lipid metabolism. Curr Opin Lipidol 2013; 24: 34–40.

    Article  CAS  Google Scholar 

  21. Borradaile NM, Carroll KK, Kurowska EM . Regulation of HepG2 cell apolipoprotein B metabolism by the citrus flavanones hesperetin and naringenin. Lipids 1999; 34: 591–598.

    Article  CAS  Google Scholar 

  22. Kurowska EM, Manthey JA . Hypolipidemic effects and absorption of citrus polymethoxylated flavones in hamsters with diet-induced hypercholesterolemia. J Agric Food Chem 2004; 52: 2879–2886.

    Article  CAS  Google Scholar 

  23. Lin Y, Vermeer MA, Bos W, van Buren L, Schuurbiers E, Miret-Catalan S et al. Molecular structures of citrus flavonoids determine their effects on lipid metabolism in HepG2 cells by primarily suppressing apoB secretion. J Agric Food Chem 2011; 59: 4496–4503.

    Article  CAS  Google Scholar 

  24. Lin N, Sato T, Takayama Y, Mimaki Y, Sashida Y, Yano M et al. Novel anti-inflammatory actions of nobiletin, a citrus polymethoxy flavonoid, on human synovial fibroblasts and mouse macrophages. Biochem Pharmacol 2003; 65: 2065–2071.

    Article  CAS  Google Scholar 

  25. Manthey JA, Grohmann K, Guthrie N . Biological properties of citrus flavonoids pertaining to cancer and inflammation. Curr Med Chem 2001; 8: 135–153.

    Article  CAS  Google Scholar 

  26. Chen Y, Yang Z, Wen C, Chang YS, Wang BC, Hsiao CA et al. Evaluation of the structure-activity relationship of flavonoids as antioxidants and toxicants of zebrafish larvae. Food Chem 2012; 134: 717–724.

    Article  CAS  Google Scholar 

  27. de Whalley CV, Rankin SM, Hoult JR, Jessup W, Leake DS . Flavonoids inhibit the oxidative modification of low density lipoproteins by macrophages. Biochem Pharmacol 1990; 39: 1743–1750.

    Article  CAS  Google Scholar 

  28. Green C, Wheatley A, McGrowder D, Dilworth L, Asemota H . Modulation of antioxidant enzymes activities and lipid peroxidation products in diet-induced hypercholesterolemic rats fed ortanique peel polymethoxylated flavones extract. J Appl Biomed 2012; 10: 91–101.

    Article  CAS  Google Scholar 

  29. Li S, Lambros T, Wang Z, Goodnow R, Ho C . Efficient and scalable method in isolation of polymethoxyflavones from orange peel extract by supercritical fluid chromatography. J. Chromatogr. B Analyt. Technol Biomed Life Sci 2007; 846: 291–297.

    Article  CAS  Google Scholar 

  30. Zheng J, Fang X, Xiao H, He L . Rapid quantification of nobiletin and tangeretin in citrus peel extractions by raman spectroscopy. J Food Process & Beverages 2013; 1: 4.

    Google Scholar 

  31. Green CO, Wheatley AO, McGrowder DA, Dilworth LL, Asemota HN . Hypolipidemic effects of Ortanique peel polymethoxylated flavones in rats with diet-induced hypercholesterolemia. J Food Biochem 2011; 35: 1555–1560.

    Article  CAS  Google Scholar 

  32. Kurowska EM, Manthey JA, Casaschi A, Theriault AG . Modulation of HepG2 cell net apolipoprotein B secretion by the citrus polymethoxyflavone, tangeretin. Lipids 2004; 39: 143–151.

    Article  CAS  Google Scholar 

  33. Mulvihill EE, Assini JM, Lee JK, Allister EM, Sutherland BG, Koppes JB et al. Nobiletin attenuates VLDL overproduction, dyslipidemia, and atherosclerosis in mice with diet-induced insulin resistance. Diabetes 2011; 60: 1446–1457.

    Article  CAS  Google Scholar 

  34. Park YB, Do KM, Bok SH, Lee MK, Jeong TS, Choi MS . Interactive effect of hesperidin and vitamin E supplements on cholesterol metabolism in high cholesterol-fed rats. Int J Vitam Nutr Res. 2001; 71: 36–44.

    Article  CAS  Google Scholar 

  35. Roza JM, Xian-Liu Z, Guthrie N . Effect of citrus flavonoids and tocotrienols on serum cholesterol levels in hypercholesterolemic subjects. Altern Ther Health Med 2007; 13: 44–48.

    PubMed  Google Scholar 

  36. Stürzbecher H-J . Nitrostress als induktionsbremse für tocotrienole und citrus-flavonoide bei der behandlung der hyperlipidämie. Praxis Magazin 2010; 27: 44–45.

    Google Scholar 

  37. Tehrani B, Weiß B, Biller A . Tocotrienol-flavonoid-kombination senkt signifikant LDL und hsCRP. Ernährung & Medizin 2010; 25: 20–24.

    Article  CAS  Google Scholar 

  38. Arikawa AY, Thomas W, Schmitz KH, Kurzer MS . Sixteen weeks of exercise reduces C-reactive protein levels in young women. Med Sci Sports Exerc 2011; 43: 1002–1009.

    Article  CAS  Google Scholar 

  39. Kao PC, Shiesh S, Wu T . Serum C-reactive protein as a marker for wellness assessment. Ann Clin Lab Sci 2006; 36: 163–169.

    CAS  PubMed  Google Scholar 

  40. King DE, Egan BM, Woolson RF, Mainous AG, Al-Solaiman Y, Jesri A . Effect of a high-fiber diet vs a fiber-supplemented diet on C-reactive protein level. Arch Intern Med 2007; 167: 502–506.

    Article  CAS  Google Scholar 

  41. Moreto F, de Oliveira EP, Manda RM, Torezan GA, Teixeira O, Michelin E et al. Pathological and behavioral risk factors for higher serum C-reactive protein concentrations in free-living adults—a Brazilian community-based study. Inflammation 2013; 36: 15–25.

    Article  CAS  Google Scholar 

  42. Pepys MB, Hirschfield GM . C-reactive protein: a critical update. J Clin Invest 2003; 111: 1805–1812.

    Article  CAS  Google Scholar 

  43. Ceriello A, Mercuri F, Quagliaro L, Assaloni R, Motz E, Tonutti L et al. Detection of nitrotyrosine in the diabetic plasma: evidence of oxidative stress. Diabetologia 2001; 44: 834–838.

    Article  CAS  Google Scholar 

  44. Kaur H, Halliwell B . Evidence for nitric oxide-mediated oxidative damage in chronic inflammation. Nitrotyrosine in serum and synovial fluid from rheumatoid patients. FEBS Lett 1994; 350: 9–12.

    Article  CAS  Google Scholar 

  45. ter Steege JC, Koster-Kamphuis L, van Straaten EA, Forget PP, Buurman WA . Nitrotyrosine in plasma of celiac disease patients as detected by a new sandwich ELISA. Free Radic Biol Med 1998; 25: 953–963.

    Article  CAS  Google Scholar 

  46. Pirro M, Schillaci G, Mannarino MR, Savarese G, Vaudo G, Siepi D et al. Effects of rosuvastatin on 3-nitrotyrosine and aortic stiffness in hypercholesterolemia. Nutr Metab Cardiovasc Dis 2007; 17: 436–441.

    Article  CAS  Google Scholar 

  47. Upmacis RK . Atherosclerosis: a link between lipid intake and protein tyrosine nitration. Lipid Insights 2008; 2008: 75.

    PubMed  PubMed Central  Google Scholar 

  48. Manach C, Donovan JL . Pharmacokinetics and metabolism of dietary flavonoids in humans. Free Radic Res. 2004; 38: 771–785.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the participants who contributed their time to this project. The production and provision of the study supplements by Dr. Loges+Co GmbH is greatly acknowledged. The authors are solely responsible for the design and conduct of the study, collection, management, analysis and interpretation of the data, as well as preparation of the manuscript. All authors had full access to the data and take responsibility for its integrity. All authors have read and agree with the manuscript as written.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J P Schuchardt.

Ethics declarations

Competing interests

The authors declare no conflict of interests

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schuchardt, J., Heine, S. & Hahn, A. A combination of palm oil tocotrienols and citrus peel polymethoxylated flavones does not influence elevated LDL cholesterol and high-sensitivity C-reactive protein levels. Eur J Clin Nutr 69, 1209–1214 (2015). https://doi.org/10.1038/ejcn.2015.44

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ejcn.2015.44

Search

Quick links