Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Carbohydrates, glycemic index and diabetes mellitus

Metabolic and physiologic effects from consuming a hunter-gatherer (Paleolithic)-type diet in type 2 diabetes



The contemporary American diet figures centrally in the pathogenesis of numerous chronic diseases– 'diseases of civilization'–such as obesity and diabetes. We investigated in type 2 diabetes whether a diet similar to that consumed by our pre-agricultural hunter-gatherer ancestors ('Paleolithic' type diet) confers health benefits.


We performed an outpatient, metabolically controlled diet study in type 2 diabetes patients. We compared the findings in 14 participants consuming a Paleo diet comprising lean meat, fruits, vegetables and nuts, and excluding added salt, and non-Paleolithic-type foods comprising cereal grains, dairy or legumes, with 10 participants on a diet based on recommendations by the American Diabetes Association (ADA) containing moderate salt intake, low-fat dairy, whole grains and legumes. There were three ramp-up diets for 7 days, then 14 days of the test diet. Outcomes included the following: mean arterial blood pressure; 24-h urine electrolytes; hemoglobin A1c and fructosamine levels; insulin resistance by euglycemic hyperinsulinemic clamp and lipid levels.


Both groups had improvements in metabolic measures, but the Paleo diet group had greater benefits on glucose control and lipid profiles. Also, on the Paleo diet, the most insulin-resistant subjects had a significant improvement in insulin sensitivity (r=0.40, P=0.02), but no such effect was seen in the most insulin-resistant subjects on the ADA diet (r= 0.39, P=0.3).


Even short-term consumption of a Paleolithic-type diet improved glucose control and lipid profiles in people with type 2 diabetes compared with a conventional diet containing moderate salt intake, low-fat dairy, whole grains and legumes.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2


  1. Murea M, Ma L, Freedman BI . Genetic and environmental factors associated with type 2 diabetes and diabetic vascular complications. Rev Diabet Stud 2012; 9: 6–22.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Parillo M, Riccardi G . Diet composition and the risk of type 2 diabetes: epidemiological and clinical evidence. Br J Nutr 2004; 92: 7–19.

    Article  CAS  PubMed  Google Scholar 

  3. Steyn NP, Mann J, Bennett PH, Temple N, Zimmet P, Tuomilehto J et al. Diet, nutrition and the prevention of type 2 diabetes. Public Health Nutr 2004; 7: 147–165.

    Article  CAS  PubMed  Google Scholar 

  4. Stanhope KL, Schwarz JM, Havel PJ . Adverse metabolic effects of dietary fructose: results from the recent epidemiological, clinical, and mechanistic studies. Curr Opin Lipidol 2013; 24: 198–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Siri PW, Krauss RM . Influence of dietary carbohydrate and fat on LDL and HDL particle distributions. Curr Atheroscler Rep 2005; 7: 455–459.

    Article  CAS  PubMed  Google Scholar 

  6. Martini LA, Catania AS, Ferreira SR . Role of vitamins and minerals in prevention and management of type 2 diabetes mellitus. Nutr Rev 2010; 68: 341–354.

    Article  PubMed  Google Scholar 

  7. Baz-Hecht M, Goldfine AB . The impact of vitamin D deficiency on diabetes and cardiovascular risk. Curr Opin Endocrinol Diabetes Obes 2010; 17: 113–119.

    Article  CAS  PubMed  Google Scholar 

  8. Weinberger MH . Salt sensitivity of blood pressure in humans. Hypertension 1996; 27: 481–490.

    Article  CAS  PubMed  Google Scholar 

  9. Eaton SB, Konner M . Paleolithic nutrition. A consideration of its nature and current implications. N Engl J Med 1985; 312: 283–289.

    Article  CAS  PubMed  Google Scholar 

  10. Frassetto LA, Schloetter M, Mietus-Synder M, Morris RC Jr, Sebastian A . Metabolic and physiologic improvements from consuming a paleolithic, hunter-gatherer type diet. Eur J Clin Nutr 2009; 63: 947–955.

    Article  CAS  PubMed  Google Scholar 

  11. Cordain L . The nutritional characteristics of a contemporary diet based on Paleolithic food groups. J Am Nutr Assoc 2002; 5: 15–24.

    Google Scholar 

  12. Strohle A, Hahn A, Sebastian A . Estimation of the diet-dependent net acid load in 229 worldwide historically studied hunter-gatherer societies. Am J Clin Nutr 2010; 91: 406–412.

    Article  PubMed  Google Scholar 

  13. Osterdahl M, Kocturk T, Koochek A, Wandell PE . Effects of a short-term intervention with a paleolithic diet in healthy volunteers. Eur J Clin Nutr 2008; 62: 682–685.

    Article  CAS  PubMed  Google Scholar 

  14. Lindeberg S, Jonsson T, Granfeldt Y, Borgstrand E, Soffman J, Sjostrom K et al. A Palaeolithic diet improves glucose tolerance more than a Mediterranean-like diet in individuals with ischaemic heart disease. Diabetologia 2007; 50: 1795–1807.

    Article  CAS  PubMed  Google Scholar 

  15. Bantle JP, Wylie-Rosett J, Albright AL, Apovian CM, Clark NG, Franz MJ et al. Nutrition recommendations and interventions for diabetes: a position statement of the American Diabetes Association. Diabetes Care 2008; 31: S61–S78.

    Article  CAS  PubMed  Google Scholar 

  16. Defronzo RA, Tobin JD, Andres R . Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol 1979; 237: E214–E223.

    CAS  PubMed  Google Scholar 

  17. Ferrannini E, Mari A . How to measure insulin sensitivity. J Hypertens 1998; 16: 895–906.

    Article  CAS  PubMed  Google Scholar 

  18. Post RE, Mainous AG 3rd, King DE, Simpson KN . Dietary fiber for the treatment of type 2 diabetes mellitus: a meta-analysis. J Am Board Fam Med 2012; 25: 16–23.

    Article  PubMed  Google Scholar 

  19. Robertson MD, Wright JW, Loizon E, Debard C, Vidal H, Shojaee-Moradie F et al. Insulin-sensitizing effects on muscle and adipose tissue after dietary fiber intake in men and women with metabolic syndrome. The J Clin Endocrinol Metab 2012; 97: 3326–3332.

    Article  CAS  PubMed  Google Scholar 

  20. Mattson FH, Grundy SM . Comparison of effects of dietary saturated, monounsaturated, and polyunsaturated fatty acids on plasma lipids and lipoproteins in man. J Lipid Res 1985; 26: 194–202.

    CAS  PubMed  Google Scholar 

  21. Jonsson T, Granfeldt Y, Erlanson-Albertsson C, Ahren B, Lindeberg S . A paleolithic diet is more satiating per calorie than a mediterranean-like diet in individuals with ischemic heart disease. Nutr Metab (Lond) 2010; 7: 85.

    Article  Google Scholar 

Download references


This study was supported by Academic Senate Grant from the University of California, San Francisco. We acknowledge the staff of the Clinical Research Center at UCSF for their assistance in conducting these studies.

Author information

Authors and Affiliations


Corresponding author

Correspondence to U Masharani.

Ethics declarations

Competing interests

All the authors were involved in the design of the experiment. UM, PS, MS, SS, AX and LF performed the experiments. UM and LF analyzed the data and wrote the manuscript. The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Masharani, U., Sherchan, P., Schloetter, M. et al. Metabolic and physiologic effects from consuming a hunter-gatherer (Paleolithic)-type diet in type 2 diabetes. Eur J Clin Nutr 69, 944–948 (2015).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links