Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Minerals, trace elements, Vit. D and bone health

Effect of high dietary sodium on bone turnover markers and urinary calcium excretion in Korean postmenopausal women with low bone mass



High salt intake is a well-recognized risk factor of osteoporosis for its modulating effect on calcium metabolism. To understand the effect of dietary sodium on bone turnover, we evaluated the association between urinary sodium excretion and bone turnover markers in Korean postmenopausal women with low bone mass.


A retrospective review of medical records at a single institution identified 537 postmenopausal women who were first diagnosed with osteopenia or osteoporosis between 2008 and 2013. Subjects were stratified by low (<2 g/day, n=77), moderate (2–4.4 g/day, n=354) and high (4.4 g/day, n=106) sodium excretion. A 24-h urine was collected to estimate sodium, calcium and creatinine. Bone turnover markers and calciotropic hormones were measured in serum. Bone mineral density (BMD) was assessed using dual-energy X-ray absorptiometry.


Sodium intake was positively associated with urinary sodium excretion (P=0.006, r=0.29). Bone turnover markers were significantly higher in the moderate-to-high urinary sodium excretion group (2 g/day) than in the low urinary sodium excretion group (<2 g/day); CTX-I (C-telopeptides of type I collagen) was 21.3% higher (P=0.001) and osteocalcin (OC) was 15.7% higher (P=0.004). Calciotropic hormones and BMD were not significantly different across the sodium excretion groups.


High urinary sodium excretion (2 g/day) increased bone turnover markers in Korean postmenopausal women, suggesting that excessive sodium intake might accelerate bone turnover.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2


  1. Ministry of Health & Welfare, Korea Centers for Disease Control and Prevention Korea Health Statistics 2011: Korea National Health and Nutrition Examination Survey (KNHANES V-2). Korea Centers for Disease Control and Prevention: Seoul, Korea, 2012.

  2. Guideline: Sodium Intake for Adults and Children. World Health Organization: Geneva, Switzerland, 2012.

  3. Ministry of Health & Welfare, Korea Centers for Disease Control and Prevention Korea Health Statistics 2009: Korea National Health and Nutrition Examination Survey (KNHANES IV-3). Korea Centers for Disease Control and Prevention: Seoul, Korea, 2010.

  4. Centers for Disease Control and Prevention Osteoporosis or low bone mass at the femur neck or lumbar spine in older adults: United States, 2005–2008 [cited by 2014 May 10]. Available from

  5. Centers for Disease Control and Prevention Healthy people 2010 final review. Arthritis, osteoporosis, and chronic back conditions (accessed on 10 May 2014). Available from

  6. Wade SW, Strader C, Fitzpatrick LA, Anthony MS, O'Malley CD . Estimating prevalence of osteoporosis: examples from industrialized countries. Arch Osteoporos 2014; 9: 182.

    Article  CAS  Google Scholar 

  7. Dawson-Hughes B, Harris SS, Krall EA, Dallal GE . Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. N Engl J Med 1997; 337: 670–676.

    Article  CAS  Google Scholar 

  8. Dawson-Hughes B . Calcium and vitamin D nutritional needs of elderly women. J Nutr 1996; 126: 1165S–1167S.

    Article  CAS  Google Scholar 

  9. Teucher B, Dainty JR, Spinks CA, Majsak-Newman G, Berry DJ, Hoogewerff JA et al. Sodium and bone health: impact of moderately high and low salt intakes on calcium metabolism in postmenopausal women. J Bone Miner Res 2008; 23: 1477–1485.

    Article  CAS  Google Scholar 

  10. Zarkadas M, Gougeon-Reyburn R, Marliss EB, Block E, Alton-Mackey M . Sodium chloride supplementation and urinary calcium excretion in postmenopausal women. Am J Clin Nutr 1989; 50: 1088–1094.

    Article  CAS  Google Scholar 

  11. Dawson-Hughes B, Fowler SE, Dalsky G, Gallagher C . Sodium excretion influences calcium homeostasis in elderly men and women. J Nutr 1996; 126: 2107–2112.

    Article  CAS  Google Scholar 

  12. Nordin BE, Need AG, Morris HA, Horowitz M . The nature and significance of the relationship between urinary sodium and urinary calcium in women. J Nutr 1993; 123: 1615–1622.

    Article  CAS  Google Scholar 

  13. Devine A, Criddle RA, Dick IM, Kerr DA, Prince RL . A longitudinal study of the effect of sodium and calcium intakes on regional bone density in postmenopausal women. Am J Clin Nutr 1995; 62: 740–745.

    Article  CAS  Google Scholar 

  14. Lin PH, Ginty F, Appel LJ, Aickin M, Bohannon A, Garnero P et al. The DASH diet and sodium reduction improve markers of bone turnover and calcium metabolism in adults. J Nutr 2003; 133: 3130–3136.

    Article  CAS  Google Scholar 

  15. Carbone LD, Barrow KD, Bush AJ, Boatright MD, Michelson JA, Pitts KA et al. Effects of a low sodium diet on bone metabolism. J Bone Miner Metab 2005; 23: 506–513.

    Article  CAS  Google Scholar 

  16. Ministry of Health & Welfare, Korea Centers for Disease Control and Prevention Korea Health Statistics 2007: Korea National Health and Nutrition Examination Survey (KNHANES IV-1). Korea Centers for Disease Control and Prevention: Seoul, Korea, 2008.

  17. Garnero P, Sornay-Rendu E, Chapuy MC, Delmas PD . Increased bone turnover in late postmenopausal women is a major determinant of osteoporosis. J Bone Miner Res 1996; 11: 337–349.

    Article  CAS  Google Scholar 

  18. Garnero P, Mulleman D, Munoz F, Sornay-Rendu E, Delmas PD . Long-term variability of markers of bone turnover in postmenopausal women and implications for their clinical use: the OFELY study. J Bone Miner Res 2003; 18: 1789–1794.

    Article  Google Scholar 

  19. Chaki O, Yoshikata I, Kikuchi R, Nakayama M, Uchiyama Y, Hirahara F et al. The predictive value of biochemical markers of bone turnover for bone mineral density in postmenopausal Japanese women. J Bone Miner Res 2000; 15: 1537–1544.

    Article  CAS  Google Scholar 

  20. Centers for Disease Control and Prevention (CDC). Sodium intake among adults - United States, 2005-2006. MMWR Morb Mortal Wkly Rep 2010; 59: 746–749.

    Google Scholar 

  21. Powles J, Fahimi S, Micha R, Khatibzadeh S, Shi P, Ezzati M et al. Global, regional and national sodium intakes in 1990 and 2010: a systematic analysis of 24 h urinary sodium excretion and dietary surveys worldwide. BMJ Open 2013; 3: e003733.

    Article  Google Scholar 

  22. Whelton PK, Appel LJ, Sacco RL, Anderson CA, Antman EM, Campbell N et al. Sodium, blood pressure, and cardiovascular disease: further evidence supporting the American Heart Association sodium reduction recommendations. Circulation 2012; 126: 2880–2889.

    Article  CAS  Google Scholar 

  23. Kotchen TA, Cowley AW Jr, Frohlich ED . Salt in health and disease—a delicate balance. N Engl J Med 2013; 368: 1229–1237.

    Article  CAS  Google Scholar 

  24. Audran M, Legrand E . Hypercalciuria. Joint Bone Spine 2000; 67: 509–515.

    Article  CAS  Google Scholar 

  25. Sabto J, Powell MJ, Breidahl MJ, Gurr FW . Influence of urinary sodium on calcium excretion in normal individuals. A redefinition of hypercalciuria. Med J Aust 1984; 140: 354–356.

    CAS  PubMed  Google Scholar 

  26. Jones G, Beard T, Parameswaran V, Greenaway T, von Witt R . A population-based study of the relationship between salt intake, bone resorption and bone mass. Eur J Clin Nutr 1997; 51: 561–565.

    Article  CAS  Google Scholar 

  27. Shortt C, Madden A, Flynn A, Morrissey PA . Influence of dietary sodium intake on urinary calcium excretion in selected Irish individuals. Eur J Clin Nutr 1988; 42: 595–603.

    CAS  PubMed  Google Scholar 

  28. Ross PD, Knowlton W . Rapid bone loss is associated with increased levels of biochemical markers. J Bone Miner Res 1998; 13: 297–302.

    Article  CAS  Google Scholar 

  29. Gerdhem P, Ivaska KK, Alatalo SL, Halleen JM, Hellman J, Isaksson A et al. Biochemical markers of bone metabolism and prediction of fracture in elderly women. J Bone Miner Res 2004; 19: 386–393.

    Article  CAS  Google Scholar 

  30. Garnero P . Markers of bone turnover for the prediction of fracture risk. Osteoporos Int 2000; 11: S55–S65.

    Article  Google Scholar 

  31. Johnell O, Oden A, De Laet C, Garnero P, Delmas PD, Kanis JA . Biochemical indices of bone turnover and the assessment of fracture probability. Osteoporos Int 2002; 13: 523–526.

    Article  CAS  Google Scholar 

  32. Vasikaran S, Eastell R, Bruyere O, Foldes AJ, Garnero P, Griesmacher A et al. Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int 2011; 22: 391–420.

    Article  CAS  Google Scholar 

  33. Hochberg MC, Greenspan S, Wasnich RD, Miller P, Thompson DE, Ross PD . Changes in bone density and turnover explain the reductions in incidence of nonvertebral fractures that occur during treatment with antiresorptive agents. J Clin Endocrinol Metab 2002; 87: 1586–1592.

    Article  CAS  Google Scholar 

  34. Delmas PD, Seeman E . Changes in bone mineral density explain little of the reduction in vertebral or nonvertebral fracture risk with anti-resorptive therapy. Bone 2004; 34: 599–604.

    Article  CAS  Google Scholar 

  35. Biver E, Chopin F, Coiffier G, Brentano TF, Bouvard B, Garnero P et al. Bone turnover markers for osteoporotic status assessment? A systematic review of their diagnosis value at baseline in osteoporosis. Joint Bone Spine 2012; 79: 20–25.

    Article  Google Scholar 

  36. Szulc P, Delmas PD . Biochemical markers of bone turnover: potential use in the investigation and management of postmenopausal osteoporosis. Osteoporos Int 2008; 19: 1683–1704.

    Article  CAS  Google Scholar 

  37. Garnero P, Hausherr E, Chapuy MC, Marcelli C, Grandjean H, Muller C et al. Markers of bone resorption predict hip fracture in elderly women: the EPIDOS Prospective Study. J Bone Miner Res 1996; 11: 1531–1538.

    Article  CAS  Google Scholar 

  38. van Daele PL, Seibel MJ, Burger H, Hofman A, Grobbee DE, van Leeuwen JP et al. Case-control analysis of bone resorption markers, disability, and hip fracture risk: the Rotterdam study. BMJ 1996; 312: 482–483.

    Article  CAS  Google Scholar 

  39. Akesson K, Ljunghall S, Jonsson B, Sernbo I, Johnell O, Gardsell P et al. Assessment of biochemical markers of bone metabolism in relation to the occurrence of fracture: a retrospective and prospective population-based study of women. J Bone Miner Res 1995; 10: 1823–1829.

    Article  CAS  Google Scholar 

  40. Szulc P, Chapuy MC, Meunier PJ, Delmas PD . Serum undercarboxylated osteocalcin is a marker of the risk of hip fracture: a three year follow-up study. Bone 1996; 18: 487–488.

    Article  CAS  Google Scholar 

  41. Zemel MB, Bedford BA, Standley PR, Sowers JR . Saline infusion causes rapid increase in parathyroid hormone and intracellular calcium levels. Am J Hypertens 1989; 2: 185–187.

    Article  CAS  Google Scholar 

  42. Breslau NA, McGuire JL, Zerwekh JE, Pak CY . The role of dietary sodium on renal excretion and intestinal absorption of calcium and on vitamin D metabolism. J Clin Endocrinol Metab 1982; 55: 369–373.

    Article  CAS  Google Scholar 

  43. Jacobs MJ, Breslau PJ, Greep JM, Lemmens HA . Clinical and rheological studies in patients with intermittent claudication. Atherosclerosis 1985; 55: 331–337.

    Article  CAS  Google Scholar 

  44. McParland BE, Goulding A, Campbell AJ . Dietary salt affects biochemical markers of resorption and formation of bone in elderly women. BMJ 1989; 299: 834–835.

    Article  CAS  Google Scholar 

  45. Prince R, Devine A, Dick I, Criddle A, Kerr D, Kent N et al. The effects of calcium supplementation (milk powder or tablets) and exercise on bone density in postmenopausal women. J Bone Miner Res 1995; 10: 1068–1075.

    Article  CAS  Google Scholar 

  46. Pattanaungkul S, Riggs BL, Yergey AL, Vieira NE, O'Fallon WM, Khosla S . Relationship of intestinal calcium absorption to 1,25-dihydroxyvitamin D [1,25(OH)2D] levels in young versus elderly women: evidence for age-related intestinal resistance to 1,25(OH)2D action. J Clin Endocrinol Metab 2000; 85: 4023–4027.

    CAS  PubMed  Google Scholar 

  47. Heaney RP, Recker RR, Stegman MR, Moy AJ . Calcium absorption in women: relationships to calcium intake, estrogen status, and age. J Bone Miner Res 1989; 4: 469–475.

    Article  CAS  Google Scholar 

  48. Massey LK, Whiting SJ . Dietary salt, urinary calcium, and bone loss. J Bone Miner Res 1996; 11: 731–736.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Y-K Min.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S., Joung, J., Cho, Y. et al. Effect of high dietary sodium on bone turnover markers and urinary calcium excretion in Korean postmenopausal women with low bone mass. Eur J Clin Nutr 69, 361–366 (2015).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links