Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Carbohydrates, glycemic index and diabetes mellitus

Postprandial effects of test meals including concentrated arabinoxylan and whole grain rye in subjects with the metabolic syndrome: a randomised study

Abstract

Background/objectives:

Prospective studies have shown an inverse relationship between whole grain consumption and the risk of type 2 diabetes, where short chain fatty acids (SCFA) may be involved. Our objective was to determine the effect of isolated arabinoxylan alone or in combination with whole grain rye kernels on postprandial glucose, insulin, free fatty acids (FFA), gut hormones, SCFA and appetite in subjects with the metabolic syndrome (MetS).

Subjects/methods:

Fifteen subjects with MetS participated in this acute, randomised, cross-over study. The test meals each providing 50 g of digestible carbohydrate were as follows: semolina porridge added concentrated arabinoxylan (AX), rye kernels (RK) or concentrated arabinoxylan combined with rye kernels (AXRK) and semolina porridge as control (SE). A standard lunch was served 4 h after the test meals. Blood samples were drawn during a 6-h period, and appetite scores and breath hydrogen were assessed every 30 min.

Results:

The AXRK meal reduced the acute glucose (P=0.005) and insulin responses (P<0.001) and the feeling of hunger (P=0.005; 0–360 min) compared with the control meal. The AX and AXRK meals increased butyrate and acetate concentrations after 6 h. No significant differences were found for the second meal responses of glucose, insulin, FFA, glucagon-like peptide-1 or ghrelin.

Conclusions:

Our results indicate a stimulatory effect of arabinoxylan on butyrate and acetate production, however, with no detectable effect on the second meal glucose response. It remains to be tested in a long-term study if a beneficial effect on the glucose response of the isolated arabinoxylan will be related to the SCFA production.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Cornier MA, Dabelea D, Hernandez TL, Lindstrom RC, Steig AJ, Stob NR et al. The metabolic syndrome. Endocr Rev 2008; 29: 777–822.

    Article  CAS  Google Scholar 

  2. Priebe MG, van Binsbergen JJ, de Vos R, Vonk RJ . Whole grain foods for the prevention of type 2 diabetes mellitus. Cochrane Database Syst Rev 2008; 23: CD006061.

    Google Scholar 

  3. Ye EQ, Chacko SA, Chou EL, Kugizaki M, Liu S . Greater whole-grain intake is associated with lower risk of type 2 diabetes, cardiovascular disease, and weight gain. J Nutr 2012; 142: 1304–1313.

    Article  CAS  Google Scholar 

  4. Wirstrom T, Hilding A, Gu HF, Ostenson CG, Bjorklund A . Consumption of whole grain reduces risk of deteriorating glucose tolerance, including progression to prediabetes. Am J Clin Nutr 2013; 97: 179–187.

    Article  Google Scholar 

  5. Hartvigsen ML, Jeppesen PB, Laerke HN, Njabe EN, Bach Knudsen KE, Hermansen K . Concentrated arabinoxylan in wheat bread has beneficial effects as rye breads on glucose and changes in gene expressions in insulin-sensitive tissues of zucker diabetic fatty (ZDF) rats. J Agric Food Chem 2013; 61: 5054–5063.

    Article  CAS  Google Scholar 

  6. Hartvigsen ML, Gregersen S, Laerke HN, Holst JJ, Bach Knudsen KE, Hermansen K . Effects of concentrated arabinoxylan and beta-glucan compared with refined wheat and whole grain rye on glucose and appetite in subjects with the metabolic syndrome: a randomized study. Eur J Clin Nutr 2014; 68: 84–90.

    Article  CAS  Google Scholar 

  7. Nilsson AC, Ostman EM, Granfeldt Y, Bjorck IM . Effect of cereal test breakfasts differing in glycemic index and content of indigestible carbohydrates on daylong glucose tolerance in healthy subjects. Am J Clin Nutr 2008; 87: 645–654.

    Article  CAS  Google Scholar 

  8. Brighenti F, Benini L, Del Rio D, Casiraghi C, Pellegrini N, Scazzina F et al. Colonic fermentation of indigestible carbohydrates contributes to the second-meal effect. Am J Clin Nutr 2006; 83: 817–822.

    Article  CAS  Google Scholar 

  9. Nilsson AC, Ostman EM, Knudsen KE, Holst JJ, Bjorck IM . A cereal-based evening meal rich in indigestible carbohydrates increases plasma butyrate the next morning. J Nutr 2010; 140: 1932–1936.

    Article  CAS  Google Scholar 

  10. Kasprzak MM, Laerke HN, Knudsen KE . Changes in molecular characteristics of cereal carbohydrates after processing and digestion. Int J Mol Sci 2012; 13: 16833–16852.

    Article  CAS  Google Scholar 

  11. McIntosh GH, Noakes M, Royle PJ, Foster PR . Whole-grain rye and wheat foods and markers of bowel health in overweight middle-aged men. Am J Clin Nutr 2003; 77: 967–974.

    Article  CAS  Google Scholar 

  12. Bach Knudsen KE, Serena A, Kjaer AK, Jorgensen H, Engberg R . Rye bread enhances the production and plasma concentration of butyrate but not the plasma concentrations of glucose and insulin in pigs. J Nutr 2005; 135: 1696–1704.

    Article  Google Scholar 

  13. Giacco R, Della Pepa G, Luongo D, Riccardi G . Whole grain intake in relation to body weight: from epidemiological evidence to clinical trials. Nutr Metab Cardiovasc Dis 2011; 21: 901–908.

    Article  CAS  Google Scholar 

  14. Wanders AJ, van den Borne JJ, de Graaf C, Hulshof T, Jonathan MC, Kristensen M et al. Effects of dietary fibre on subjective appetite, energy intake and body weight: a systematic review of randomized controlled trials. Obes Rev 2011; 12: 724–739.

    CAS  PubMed  Google Scholar 

  15. Mohlig M, Koebnick C, Weickert MO, Lueder W, Otto B, Steiniger J et al. Arabinoxylan-enriched meal increases serum ghrelin levels in healthy humans. Horm Metab Res 2005; 37: 303–308.

    Article  CAS  Google Scholar 

  16. Lu ZX, Walker KZ, Muir JG, Mascara T, O'Dea K . Arabinoxylan fiber, a byproduct of wheat flour processing, reduces the postprandial glucose response in normoglycemic subjects. Am J Clin Nutr 2000; 71: 1123–1128.

    Article  CAS  Google Scholar 

  17. Garcia AL, Otto B, Reich SC, Weickert MO, Steiniger J, Machowetz A et al. Arabinoxylan consumption decreases postprandial serum glucose, serum insulin and plasma total ghrelin response in subjects with impaired glucose tolerance. Eur J Clin Nutr 2007; 61: 334–341.

    Article  CAS  Google Scholar 

  18. Garcia AL, Steiniger J, Reich SC, Weickert MO, Harsch I, Machowetz A et al. Arabinoxylan fibre consumption improved glucose metabolism, but did not affect serum adipokines in subjects with impaired glucose tolerance. Horm Metab Res 2006; 38: 761–766.

    Article  CAS  Google Scholar 

  19. Lu ZX, Walker KZ, Muir JG, O'Dea K . Arabinoxylan fibre improves metabolic control in people with Type II diabetes. Eur J Clin Nutr 2004; 58: 621–628.

    Article  CAS  Google Scholar 

  20. Alberti KG, Zimmet P, Shaw J, IDF Epidemiology Task Force Consensus Group. The metabolic syndrome—a new worldwide definition. Lancet 2005; 366: 1059–1062.

    Article  Google Scholar 

  21. Flint A, Raben A, Blundell JE, Astrup A . Reproducibility, power and validity of visual analogue scales in assessment of appetite sensations in single test meal studies. Int J Obes Relat Metab Disord 2000; 24: 38–48.

    Article  CAS  Google Scholar 

  22. Hansen B . Determination of nitrogen as elementary-N, an alternative to Kjeldahl. Acta Agric Scand 1989; 39: 113–118.

    Article  CAS  Google Scholar 

  23. Stoldt W . Vorschlag zur Vereinheitlichung der Fettbestimmung in Lebensmitteln. Fette und Seifen 1952; 54: 206–207.

    Article  CAS  Google Scholar 

  24. Larsson K, Bengtsson S Bestämming av lättilgängeliga kolhydrater i växtmaterial (Determination of readily available carbohydrates in plant material). National Laboratory of Agricultural Chemistry Methods Report no. 22. National Laboratory of Agricultural Chemistry: Uppsala, 1983.

    Google Scholar 

  25. Bach Knudsen KE . Carbohydrate and lignin contents of plant materials used in animal feeding. Anim Feed Sci Technol 1997; 67: 319–338.

    Article  CAS  Google Scholar 

  26. Theander O, Aman P . Studies on dietary-fibers.1. Analysis and chemical characterization of water-soluble and water-insoluble dietary-fibers. Swed J Agric Res 1979; 9: 97–106.

    CAS  Google Scholar 

  27. Kasprzak MM, Laerke HN, Knudsen KE . Effects of isolated and complex dietary fiber matrices in breads on carbohydrate digestibility and physicochemical properties of ileal effluent from pigs. J Agric Food Chem 2012; 60: 12469–12476.

    Article  CAS  Google Scholar 

  28. Orskov C, Rabenhoj L, Wettergren A, Kofod H, Holst JJ . Tissue and plasma concentrations of amidated and glycine-extended glucagon-like peptide I in humans. Diabetes 1994; 43: 535–539.

    Article  CAS  Google Scholar 

  29. Brighenti F . Summary of the conclusion of the working group on profibre interlaboratory study on determination of short chain fatty acids in blood. In: Gullion F, Amadò R, Amaral-Collaco MT, Andersson H, Asp NG, Bach Knudsen KE, Champ M, Mathers J, Robertson JA, Rowland I, Van Loo J (eds). Functional Properties of Non-digestible Carbohydrates. European Commission, DG XII, Science, Research and Development: Brussels, Belgium, 1998, pp 150–153.

    Google Scholar 

  30. Rakha A, Aman P, Andersson R . How does the preparation of rye porridge affect molecular weight distribution of extractable dietary fibers? Int J Mol Sci 2011; 12: 3381–3393.

    Article  CAS  Google Scholar 

  31. Jenkins DJ, Wolever TM, Taylor RH, Griffiths C, Krzeminska K, Lawrie JA et al. Slow release dietary carbohydrate improves second meal tolerance. Am J Clin Nutr 1982; 35: 1339–1346.

    Article  CAS  Google Scholar 

  32. Liljeberg HG, Akerberg AK, Bjorck IM . Effect of the glycemic index and content of indigestible carbohydrates of cereal-based breakfast meals on glucose tolerance at lunch in healthy subjects. Am J Clin Nutr 1999; 69: 647–655.

    Article  CAS  Google Scholar 

  33. Tarini J, Wolever TM . The fermentable fibre inulin increases postprandial serum short-chain fatty acids and reduces free-fatty acids and ghrelin in healthy subjects. Appl Physiol Nutr Metab 2010; 35: 9–16.

    Article  CAS  Google Scholar 

  34. Nilsson A, Granfeldt Y, Ostman E, Preston T, Bjorck I . Effects of GI and content of indigestible carbohydrates of cereal-based evening meals on glucose tolerance at a subsequent standardised breakfast. Eur J Clin Nutr 2006; 60: 1092–1099.

    Article  CAS  Google Scholar 

  35. Gråsten S, Liukkonen K, Chrevatidis A, El-Nezami H, Poutanen K, Mykkänen H . Effects of wheat pentosan and inulin on the metabolic activity of fecal microbiota and on bowel function in healthy humans. Nutr Res 2003; 23: 1503–1514.

    Article  Google Scholar 

  36. Glitsø L, Gruppen H, Schols H, Højsgaard S, Sandström B, Bach Knudsen K . Degradation of rye arabinoxylans in the large intestine of pigs. J Sci Food Agric 1999; 79: 961–969.

    Article  Google Scholar 

  37. Juntunen KS, Niskanen LK, Liukkonen KH, Poutanen KS, Holst JJ, Mykkanen HM . Postprandial glucose, insulin, and incretin responses to grain products in healthy subjects. Am J Clin Nutr 2002; 75: 254–262.

    Article  CAS  Google Scholar 

  38. Juntunen KS, Laaksonen DE, Autio K, Niskanen LK, Holst JJ, Savolainen KE et al. Structural differences between rye and wheat breads but not total fiber content may explain the lower postprandial insulin response to rye bread. Am J Clin Nutr 2003; 78: 957–964.

    Article  CAS  Google Scholar 

  39. Rosen LA, Silva LO, Andersson UK, Holm C, Ostman EM, Bjorck IM . Endosperm and whole grain rye breads are characterized by low post-prandial insulin response and a beneficial blood glucose profile. Nutr J 2009; 8: 42–52.

    Article  Google Scholar 

  40. Rosen LA, Ostman EM, Shewry PR, Ward JL, Andersson AA, Piironen V et al. Postprandial glycemia, insulinemia, and satiety responses in healthy subjects after whole grain rye bread made from different rye varieties 1. J Agric Food Chem 2011; 59: 12139–12148.

    Article  CAS  Google Scholar 

  41. van Loon LJ, Kruijshoop M, Menheere PP, Wagenmakers AJ, Saris WH, Keizer HA . Amino acid ingestion strongly enhances insulin secretion in patients with long-term type 2 diabetes. Diabetes Care 2003; 26: 625–630.

    Article  CAS  Google Scholar 

  42. Thorburn A, Muir J, Proietto J . Carbohydrate fermentation decreases hepatic glucose output in healthy subjects. Metabolism 1993; 42: 780–785.

    Article  CAS  Google Scholar 

  43. Lejeune MP, Westerterp KR, Adam TC, Luscombe-Marsh ND, Westerterp-Plantenga MS . Ghrelin and glucagon-like peptide 1 concentrations, 24-h satiety, and energy and substrate metabolism during a high-protein diet and measured in a respiration chamber. Am J Clin Nutr 2006; 83: 89–94.

    Article  CAS  Google Scholar 

  44. Mansour A, Hosseini S, Larijani B, Pajouhi M, Mohajeri-Tehrani MR Nutrients related to GLP1 secretory responses. Nutrition 2013; 29: 813–820.

    Article  CAS  Google Scholar 

  45. Freeland KR, Wilson C, Wolever TM . Adaptation of colonic fermentation and glucagon-like peptide-1 secretion with increased wheat fibre intake for 1 year in hyperinsulinaemic human subjects. Br J Nutr 2010; 103: 82–90.

    Article  CAS  Google Scholar 

  46. Cherbut C . Motor effects of short-chain fatty acids and lactate in the gastrointestinal tract. Proc Nutr Soc 2003; 62: 95–99.

    Article  CAS  Google Scholar 

  47. Nilsson AC, Ostman EM, Holst JJ, Bjorck IM . Including indigestible carbohydrates in the evening meal of healthy subjects improves glucose tolerance, lowers inflammatory markers, and increases satiety after a subsequent standardized breakfast. J Nutr 2008; 138: 732–739.

    Article  CAS  Google Scholar 

  48. Rolls BJ, Castellanos VH, Halford JC, Kilara A, Panyam D, Pelkman CL et al. Volume of food consumed affects satiety in men. Am J Clin Nutr 1998; 67: 1170–1177.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by The Danish Council for Strategic Research (DSF 2101–08–0068), the Nordic Centre of Excellence Programme on Food, Nutrition and Health, NordForsk (SYSDIET; 070014) and NNF Center for Basic Metabolic Research, Department of Biomedical Sciences, University of Copenhagen. We thank Manildra Group Ltd and Lantmännen Food R&D for the arabinoxylan and ingredients for the porridge. Furthermore, we thank Tove Skrumsager and Lene Trudsø for excellent technical assistance and Kia Valum Rasmussen for dietetic assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M L Hartvigsen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartvigsen, M., Lærke, H., Overgaard, A. et al. Postprandial effects of test meals including concentrated arabinoxylan and whole grain rye in subjects with the metabolic syndrome: a randomised study. Eur J Clin Nutr 68, 567–574 (2014). https://doi.org/10.1038/ejcn.2014.25

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ejcn.2014.25

This article is cited by

Search

Quick links