Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Body composition, energy expenditure and physical activity

Redistribution of body composition in patients with Graves’ disease after iodine-131 treatment

Abstract

Objective:

The objective of this study was to investigate body composition redistribution at 3 months after radioactive iodine therapy (RAI).

Methods:

Eighty patients with Graves’ disease (GD) for RAI and 18 volunteers were recruited. All patients underwent thyroid status test and dual-energy x-ray absorptiometry at baseline and 3 months after RAI. According to the second thyroid status test, patients were divided into the following groups: A, with aggravated hyperthyroidism; B-1, with improved hyperthyroidism; B-2, with euthyroidism; and B-3, with hypothyroidism.

Results:

Total lean mass (LM) but fat mass (FM) and bone mineral content (BMC) of whole GD patients after RAI recovered to be not different with controls. Compared with baseline, in group A, FM in the left leg increased, and LM in left arm, right arm, trunk and total LM decreased (P<0.05). In B-2, FM in the head increased, and LM in the head, right arm, trunk and total LM increased (P<0.05). In B-3, FM in the right leg and total body fat percentage decreased, but FM in the head, android-to-gynoid fat ratio and body mass index increased (P<0.05); LM of all sites, weight and total mass increased (P<0.05); BMC in lumbar spine and left leg, and total BMC decreased (P<0.05). Body composition of unmentioned sites was retained after RAI in each group (P>0.05).

Conclusions:

Replenishment of LM gets priority rather than FM and BMC during the first 3 months after RAI, and the increase in LM starts from the upper body; head is the regional site in which FM recovery occurs first.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Svendsen OL, Haarbo J, Hassager C, Christiansen C . Accuracy of measurements of body composition by dual-energy x-ray absorptiometry in vivo. Am J Clin Nutr 1993; 57: 605–608.

    Article  CAS  Google Scholar 

  2. Svendsen OL, Hassager C, Bergmann I, Christiansen C . Measurement of abdominal and intra-abdominal fat in postmenopausal women by dual energy X-ray absorptiometry and anthropometry: comparison with computerized tomography. Int J Obes Relat Metab Disord 1993; 17: 45–51.

    CAS  PubMed  Google Scholar 

  3. Riis AL, Gravholt CH, Djurhuus CB, Norrelund H, Jorgensen JO, Weeke J et al. Elevated regional lipolysis in hyperthyroidism. J Clin Endocrinol Metab 2002; 87: 4747–4753.

    Article  CAS  Google Scholar 

  4. Jyotsna VP, Sahoo A, Ksh SA, Sreenivas V, Gupta N . Bone mineral density in patients of Graves disease pre- & post-treatment in a predominantly vitamin D deficient population. Indian J Med Res 2012; 135: 36–41.

    Article  CAS  Google Scholar 

  5. Potenza M, Via MA, Yanagisawa RT . Excess thyroid hormone and carbohydrate metabolism. Endocr Pract 2009; 15: 254–262.

    Article  Google Scholar 

  6. Brennan MD, Powell C, Kaufman KR, Sun PC, Bahn RS, Nair KS . The impact of overt and subclinical hyperthyroidism on skeletal muscle. Thyroid 2006; 16: 375–380.

    Article  Google Scholar 

  7. El Hadidy el HM, Ghonaim M, El Gawad S, El Atta MA . Impact of severity, duration, and etiology of hyperthyroidism on bone turnover markers and bone mineral density in men. BMC Endocr Disord 2011; 11: 15.

    Article  Google Scholar 

  8. Hudec SM, Camacho PM . Secondary causes of osteoporosis. Endocr Pract 2013; 19: 120–128.

    Article  Google Scholar 

  9. Pearce EN, Braverman LE . Hyperthyroidism: advantages and disadvantages of medical therapy. Surg Clin North Am 2004; 84: 833–847.

    Article  Google Scholar 

  10. Monte O, Calliari LE, Longui CA . Radioactive iodine therapy for Graves' disease in childhood and adolescence. Arq Bras Endocrinol Metabol 2004; 48: 166–170.

    Article  Google Scholar 

  11. Ghadban WK, Zirie MA, Al-Khateeb DA, Jayyousi AA, Mobayedh HM, El-Aloosy AS . Radioiodine treatment of hyperthyroidism. Success rate and influence of thyrostatic medication. Saudi Med J 2003; 24: 347–351.

    PubMed  Google Scholar 

  12. Oszukowska L, Knapska-Kucharska M, Lewinski A . Effects of drugs on the efficacy of radioiodine (I) therapy in hyperthyroid patients. Arch Med Sci 2010; 6: 4–10.

    Article  CAS  Google Scholar 

  13. Proust-Lemoine E, d'Herbomez M, Marchandise X, Wemeau JL . Precocious hypothyroidism mechanisms after radioiodine treatment in Graves' disease. Presse Med 2011; 40: e1–e8.

    Article  Google Scholar 

  14. Peden NR, Hart IR . The early development of transient and permanent hypothyroidism following radioiodine therapy for hyperthyroid Graves' disease. Can Med Assoc J 1984; 130: 1141–1144.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Acotto CG, Niepomniszcze H, Mautalen CA . Estimating body fat and lean tissue distribution in hyperthyroidism by dual-energy X-ray absorptiometry. J Clin Densitom 2002; 5: 305–311.

    Article  Google Scholar 

  16. Greenlund LJ, Nair KS, Brennan MD . Changes in body composition in women following treatment of overt and subclinical hyperthyroidism. Endocr Pract 2008; 14: 973–978.

    Article  Google Scholar 

  17. Numbenjapon N, Costin G, Pitukcheewanont P . Normalization of cortical bone density in children and adolescents with hyperthyroidism treated with antithyroid medication. Osteoporos Int 2012; 23: 2277–2282.

    Article  CAS  Google Scholar 

  18. Lonn L, Stenlof K, Ottosson M, Lindroos AK, Nystrom E, Sjostrom L . Body weight and body composition changes after treatment of hyperthyroidism. J Clin Endocrinol Metab 1998; 83: 4269–4273.

    CAS  PubMed  Google Scholar 

  19. Hologic QDR 4500 Fan Beam X-ray Bone Densitometer User's Guide 1997.

  20. ISCD Precision Calculator Basic. Available from https://eweb.iscd.org/eweb/DynamicPage.aspx?expires=yes?Site=ewebISCD&WebCode=COEMerchandiseSearch&ListSearchFor=precision.

  21. Manso PG, Furlanetto RP, Wolosker AM, Paiva ER, de Abreu MT, Maciel RM . Prospective and controlled study of ophthalmopathy after radioiodine therapy for Graves' hyperthyroidism. Thyroid 1998; 8: 49–52.

    Article  CAS  Google Scholar 

  22. Traisk F, Tallstedt L, Abraham-Nordling M, Andersson T, Berg G, Calissendorff J et al. Thyroid-associated ophthalmopathy after treatment for Graves' hyperthyroidism with antithyroid drugs or iodine-131. J Clin Endocrinol Metab 2009; 94: 3700–3707.

    Article  CAS  Google Scholar 

  23. Ren R, Jiang X, Zhang X, Guan Q, Yu C, Li Y et al. Association between thyroid hormones and body fat in euthyroid subjects. Clin Endocrinol (Oxf) 2013; 80: 585–590.

    Article  Google Scholar 

  24. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM . Positional cloning of the mouse obese gene and its human homologue. Nature 1994; 372: 425–432.

    Article  CAS  Google Scholar 

  25. Baldwin KM, Joanisse DR, Haddad F, Goldsmith RL, Gallagher D, Pavlovich KH et al. Effects of weight loss and leptin on skeletal muscle in human subjects. Am J Physiol Regul Integr Comp Physiol 2011; 301: R1259–R1266.

    Article  CAS  Google Scholar 

  26. Mantzoros CS, Magkos F, Brinkoetter M, Sienkiewicz E, Dardeno TA, Kim SY et al. Leptin in human physiology and pathophysiology. Am J Physiol Endocrinol Metab 2011; 301: E567–E584.

    Article  CAS  Google Scholar 

  27. Khan SM, Hamnvik OP, Brinkoetter M, Mantzoros CS . Leptin as a modulator of neuroendocrine function in humans. Yonsei Med J 2012; 53: 671–679.

    Article  CAS  Google Scholar 

  28. Oge A, Bayraktar F, Saygili F, Guney E, Demir S . TSH influences serum leptin levels independent of thyroid hormones in hypothyroid and hyperthyroid patients. Endocr J 2005; 52: 213–217.

    Article  CAS  Google Scholar 

  29. Miyakawa M, Tsushima T, Murakami H, Isozaki O, Takano K . Serum leptin levels and bioelectrical impedance assessment of body composition in patients with Graves' disease and hypothyroidism. Endocr J 1999; 46: 665–673.

    Article  CAS  Google Scholar 

  30. Sesmilo G, Casamitjana R, Halperin I, Gomis R, Vilardell E . Role of thyroid hormones on serum leptin levels. Eur J Endocrinol 1998; 139: 428–430.

    Article  CAS  Google Scholar 

  31. Wolsk E, Mygind H, Grondahl TS, Pedersen BK, van Hall G . Human skeletal muscle releases leptin in vivo. Cytokine 2012; 60: 667–673.

    Article  CAS  Google Scholar 

  32. Wang J, Ma X, Qu S, Li Y, Han L, Sun X et al. High prevalence of subclinical thyroid dysfunction and the relationship between thyrotropin levels and cardiovascular risk factors in residents of the coastal area of China. Exp Clin Cardiol 2013; 18: e16–e20.

    PubMed  PubMed Central  Google Scholar 

  33. Jung CH, Sung KC, Shin HS, Rhee EJ, Lee WY, Kim BS et al. Thyroid dysfunction and their relation to cardiovascular risk factors such as lipid profile, hsCRP, and waist hip ratio in Korea. Korean J Int Med 2003; 18: 146–153.

    Article  Google Scholar 

  34. Svare A, Nilsen TI, Bjoro T, Asvold BO, Langhammer A . Serum TSH related to measures of body mass: longitudinal data from the HUNT Study, Norway. Clin Endocrinol (Oxf) 2011; 74: 769–775.

    Article  CAS  Google Scholar 

  35. Knudsen N, Laurberg P, Rasmussen LB, Bulow I, Perrild H, Ovesen L et al. Small differences in thyroid function may be important for body mass index and the occurrence of obesity in the population. J Clin Endocrinol Metab 2005; 90: 4019–4024.

    Article  CAS  Google Scholar 

  36. Frankenfield DC, Rowe WA, Cooney RN, Smith JS, Becker D . Limits of body mass index to detect obesity and predict body composition. Nutrition (Burbank, Los Angeles County, CA) 2001; 17: 26–30.

    Article  CAS  Google Scholar 

  37. de la Rosa RE, Hennessey JV, Tucci JR . A longitudinal study of changes in body mass index and total body composition after radioiodine treatment for thyrotoxicosis. Thyroid 1997; 7: 401–405.

    Article  CAS  Google Scholar 

  38. Wolf M, Weigert A, Kreymann G . Body composition and energy expenditure in thyroidectomized patients during short-term hypothyroidism and thyrotropin-suppressive thyroxine therapy. Eur J Endocrinol 1996; 134: 168–173.

    Article  CAS  Google Scholar 

  39. Tagliaferri M, Berselli ME, Calo G, Minocci A, Savia G, Petroni ML et al. Subclinical hypothyroidism in obese patients: relation to resting energy expenditure, serum leptin, body composition, and lipid profile. Obes Res 2001; 9: 196–201.

    Article  CAS  Google Scholar 

  40. Peltz G, Aguirre MT, Sanderson M, Fadden MK . The role of fat mass index in determining obesity. Am J Human Biol 2010; 22: 639–647.

    Article  Google Scholar 

  41. Riis AL, Jorgensen JO, Ivarsen P, Frystyk J, Weeke J, Moller N . Increased protein turnover and proteolysis is an early and primary feature of short-term experimental hyperthyroidism in healthy women. J Clin Endocrinol Metab 2008; 93: 3999–4005.

    Article  CAS  Google Scholar 

  42. Simonides WS, van Hardeveld C . Thyroid hormone as a determinant of metabolic and contractile phenotype of skeletal muscle. Thyroid 2008; 18: 205–216.

    Article  CAS  Google Scholar 

  43. Norrelund H, Hove KY, Brems-Dalgaard E, Jurik AG, Nielsen LP, Nielsen S et al. Muscle mass and function in thyrotoxic patients before and during medical treatment. Clin Endocrinol (Oxf) 1999; 51: 693–699.

    Article  CAS  Google Scholar 

  44. Brennan MD, Coenen-Schimke JM, Bigelow ML, Nair KS . Changes in skeletal muscle protein metabolism and myosin heavy chain isoform messenger ribonucleic acid abundance after treatment of hyperthyroidism. J Clin Endocrinol Metab 2006; 91: 4650–4656.

    Article  CAS  Google Scholar 

  45. de Lloyd A, Bursell J, Gregory JW, Rees DA, Ludgate M . TSH receptor activation and body composition. J Endocrinol 2010; 204: 13–20.

    Article  CAS  Google Scholar 

  46. Visser WE, Heemstra KA, Swagemakers SM, Ozgur Z, Corssmit EP, Burggraaf J et al. Physiological thyroid hormone levels regulate numerous skeletal muscle transcripts. J Clin Endocrinol Metab 2009; 94: 3487–3496.

    Article  CAS  Google Scholar 

  47. Abe E, Sun L, Mechanick J, Iqbal J, Yamoah K, Baliram R et al. Bone loss in thyroid disease: role of low TSH and high thyroid hormone. Ann NY Acad Sci 2007; 1116: 383–391.

    Article  CAS  Google Scholar 

  48. Lanham SA, Fowden AL, Roberts C, Cooper C, Oreffo RO, Forhead AJ . Effects of hypothyroidism on the structure and mechanical properties of bone in the ovine fetus. J Endocrinol 2011; 210: 189–198.

    Article  CAS  Google Scholar 

  49. Gonzalez-Rodriguez LA, Felici-Giovanini ME, Haddock L . Thyroid dysfunction in an adult female population: a population-based study of Latin American Vertebral Osteoporosis Study (LAVOS)—Puerto Rico site. P R Health Sci J 2013; 32: 57–62.

    PubMed  PubMed Central  Google Scholar 

  50. Di Mase R, Cerbone M, Improda N, Esposito A, Capalbo D, Mainolfi C et al. Bone health in children with long-term idiopathic subclinical hypothyroidism. Ital J Pediatr 2012; 38: 56.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully thank the technicians in our department for their help.

Author Contributions

M-Hua Cheng substantially contributed to conception and design, and interpretation of data; Liang-Jun Xie, Han-Jian Zhou, Jian-Fang Li, Feng Zhang, Feng-Wei Zeng, Lu-Ping Qin, Yi Chen and Hai-Juan Yuan contributed to acquisition of data; Liang-Jun Xie contributed to analysis and interpretation of data; and Liang-Jun Xie contributed to drafting of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M-H Cheng.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, LJ., Zhou, HJ., Li, JF. et al. Redistribution of body composition in patients with Graves’ disease after iodine-131 treatment. Eur J Clin Nutr 69, 856–861 (2015). https://doi.org/10.1038/ejcn.2014.232

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ejcn.2014.232

This article is cited by

Search

Quick links