Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lipids and cardiovascular/metabolic health

Adipose tissue n-3 fatty acids and metabolic syndrome

Abstract

Background:

Evidence regarding the relationship of n-3 fatty acids (FA) to type 2 diabetes and metabolic syndrome components (MetS) is inconsistent.

Objective:

To examine associations of adipose tissue n-3 FA with MetS.

Design:

We studied 1611 participants without prior history of diabetes or heart disease who were participants in a population-based case–control study of diet and heart disease (The Costa Rica Heart Study). We calculated prevalence ratios (PR) and 95% confidence intervals (CI) for MetS by quartile of n-3 FA in adipose tissue derived mainly from plants (α-Linolenic acid (ALA)), fish (eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)) or metabolism (docosapentaenoic acid (DPA), as well as the EPA:ALA ratio, a surrogate marker of delta-6 desaturase activity).

Results:

N-3 FA levels in adipose tissue were associated with MetS prevalence in opposite directions. The PR (95% CI) for the highest compared with the lowest quartile adjusted for age, sex, body mass index (BMI), residence, lifestyle, diet and other FAs were 0.60 (0.44, 0.81) for ALA, 1.43 (1.12, 1.82) for EPA, 1.63 (1.22, 2.18) for DPA and 1.47 (1.14, 1.88) for EPA:ALA, all P for trend <0.05. Although these associations were no longer significant (except DPA) after adjustment for BMI, ALA and DPA were associated with lower glucose and higher triglyceride levels, P<0.05 (respectively).

Conclusions:

These results suggest that ALA could exert a modest protective benefit, whereas EPA and DHA are not implicated in MetS. The positive associations for DPA and MetS could reflect higher delta-6 desaturase activity caused by increased adiposity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. International Diabetes Foundation. IDF Diabetes Atlas, 6th edn. Available from http://www.idf.org/diabetesatlas (cited 6 December 2012)..

  2. Grundy SM, Brewer HB Jr, Cleeman JI, Smith SC Jr, Lenfant C . American Heart A Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation 2004; 109: 433–438.

    Article  PubMed  Google Scholar 

  3. Balk E, Chung M, Lichtenstein A, Chew P, Kupelnick B, Lawrence A et al. Effects of Omega-3 Fatty Acids on Cardiovascular Risk Factors and Intermediate Markers of Cardiovascular Disease. Summary, Evidence Report/Technology Assessment: Number 93. AHRQ Publication Number 04-E010-1. Agency for Healthcare Research and Quality: Rockville, MD, 2004. http://www.ahrq.gov/clinic/epcsums/o3cardrisksum.htm.

  4. Zhang G, Sun Q, Hu FB, Ye X, Yu Z, Zong G et al. Erythrocyte n-3 fatty acids and metabolic syndrome in middle-aged and older Chinese. J Clin Endocrinol Metab 2012; 97: E973–E977.

    Article  CAS  PubMed  Google Scholar 

  5. Huang T, Bhulaidok S, Cai Z, Xu T, Xu F, Wahlqvist ML et al. Plasma phospholipids n-3 polyunsaturated fatty acid is associated with metabolic syndrome. Mol Nutr Food Res 2010; 54: 1628–1635.

    Article  CAS  PubMed  Google Scholar 

  6. Lai YH, Petrone AB, Pankow JS, Arnett DK, North KE, Ellison RC et al. Association of dietary omega-3 fatty acids with prevalence of metabolic syndrome: The National Heart, Lung, and Blood Institute Family Heart Study. Clin Nutr 2013; 32: 966–969.

    Article  CAS  PubMed  Google Scholar 

  7. Baik I, Abbott RD, Curb JD, Shin C . Intake of fish and n-3 fatty acids and future risk of metabolic syndrome. J Am Diet Assoc 2010; 110: 1018–1026.

    Article  CAS  PubMed  Google Scholar 

  8. Wu JH, Micha R, Imamura F, Pan A, Biggs ML, Ajaz O et al. Omega-3 fatty acids and incident type 2 diabetes: a systematic review and meta-analysis. Br J Nutr 2012; 107 (Suppl 2): S214–S227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Petrova S, Dimitrov P, Willett WC, Campos H . The global availability of n-3 fatty acids. Public Health Nutr 2011; 14: 1157–1164.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Campos H, Baylin A, Willett WC . Alpha-linolenic acid and risk of nonfatal acute myocardial infarction. Circulation 2008; 118: 339–345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kabagambe EK, Baylin A, Ascherio A, Campos H . The type of oil used for cooking is associated with the risk of nonfatal acute myocardial infarction in costa rica. J Nutr 2005; 135: 2674–2679.

    Article  CAS  PubMed  Google Scholar 

  12. Expert Panel on Detection ETreatment of High Blood Cholesterol in A. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 2001; 285: 2486–2497.

    Article  Google Scholar 

  13. Baylin A, Kabagambe EK, Siles X, Campos H . Adipose tissue biomarkers of fatty acid intake. Am J Clin Nutr 2002; 76: 750–757.

    Article  CAS  PubMed  Google Scholar 

  14. Dayton S, Hashimoto S, Dixon W, Pearce ML . Composition of lipids in human serum and adipose tissue during prolonged feeding of a diet high in unsaturated fat. J Lipid Res 1966; 7: 103–111.

    CAS  PubMed  Google Scholar 

  15. Katan MB, Deslypere JP, van Birgelen AP, Penders M, Zegwaard M . Kinetics of the incorporation of dietary fatty acids into serum cholesteryl esters, erythrocyte membranes, and adipose tissue: an 18-month controlled study. J Lipid Res 1997; 38: 2012–2022.

    CAS  PubMed  Google Scholar 

  16. Lillington JM, Trafford DJ, Makin HL . A rapid and simple method for the esterification of fatty acids and steroid carboxylic acids prior to gas-liquid chromatography. Clin Chim Acta 1981; 111: 91–98.

    Article  CAS  PubMed  Google Scholar 

  17. Baylin A, Kim MK, Donovan-Palmer A, Siles X, Dougherty L, Tocco P et al. Fasting whole blood as a biomarker of essential fatty acid intake in epidemiologic studies: comparison with adipose tissue and plasma. Am J Epidemiol 2005; 162: 373–381.

    Article  PubMed  Google Scholar 

  18. Sprecher H, Luthria DL, Mohammed BS, Baykousheva SP . Reevaluation of the pathways for the biosynthesis of polyunsaturated fatty acids. J Lipid Res 1995; 36: 2471–2477.

    CAS  PubMed  Google Scholar 

  19. Sprecher H . Metabolism of highly unsaturated n-3 and n-6 fatty acids. Biochim Biophys Acta 2000; 1486: 219–231.

    Article  CAS  PubMed  Google Scholar 

  20. Ailhaud G, Massiera F, Weill P, Legrand P, Alessandri JM, Guesnet P . Temporal changes in dietary fats: role of n-6 polyunsaturated fatty acids in excessive adipose tissue development and relationship to obesity. Prog Lipid Res 2006; 45: 203–236.

    Article  CAS  PubMed  Google Scholar 

  21. Goyens PL, Mensink RP . The dietary alpha-linolenic acid to linoleic acid ratio does not affect the serum lipoprotein profile in humans. J Nutr 2005; 135: 2799–2804.

    Article  CAS  PubMed  Google Scholar 

  22. Williams ES, Baylin A, Campos H . Adipose tissue arachidonic acid and the metabolic syndrome in Costa Rican adults. Clin Nutr 2007; 26: 474–482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Spiegelman D, Hertzmark E . Easy SAS calculations for risk or prevalence ratios and differences. Am J Epidemiol 2005; 162: 199–200.

    Article  PubMed  Google Scholar 

  24. Mattei J, Malik V, Hu FB, Campos H . Substituting homemade fruit juice for sugar-sweetened beverages is associated with lower odds of metabolic syndrome among Hispanic adults. J Nutr 2012; 142: 1081–1087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mattei J, Hu FB, Campos H . A higher ratio of beans to white rice is associated with lower cardiometabolic risk factors in Costa Rican adults. Am J Clin Nutr 2011; 94: 869–876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. White H . A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity. Econometrica (pre-1986) 1980; 48: 817.

    Article  Google Scholar 

  27. Carpentier YA, Portois L, Malaisse WJ . n-3 fatty acids and the metabolic syndrome. Am J Clin Nutr 2006; 83 (Suppl 6): 1499S–1504S.

    Article  CAS  PubMed  Google Scholar 

  28. Iggman D, Arnlov J, Vessby B, Cederholm T, Sjogren P, Riserus U . Adipose tissue fatty acids and insulin sensitivity in elderly men. Diabetologia 2010; 53: 850–857.

    Article  CAS  PubMed  Google Scholar 

  29. Brunner EJ, Jones PJ, Friel S, Bartley M . Fish, human health and marine ecosystem health: policies in collision. Int J Epidemiol 2009; 38: 93–100.

    Article  PubMed  Google Scholar 

  30. Ruiz-Narvaez EA, Bare L, Arellano A, Catanese J, Campos H . West African and Amerindian ancestry and risk of myocardial infarction and metabolic syndrome in the Central Valley population of Costa Rica. Hum Genet 2010; 127: 629–638.

    Article  PubMed  Google Scholar 

  31. Ebbesson SO, Tejero ME, Nobmann ED, Lopez-Alvarenga JC, Ebbesson L, Romenesko T et al. Fatty acid consumption and metabolic syndrome components: the GOCADAN study. J Cardiometab Syndr 2007; 2: 244–249.

    Article  PubMed  Google Scholar 

  32. Sun Q, Ma J, Campos H, Hankinson SE, Hu FB . Comparison between plasma and erythrocyte fatty acid content as biomarkers of fatty acid intake in US women. Am J Clin Nutr 2007; 86: 74–81.

    Article  CAS  PubMed  Google Scholar 

  33. Warensjo E, Rosell M, Hellenius ML, Vessby B, De Faire U, Riserus U . Associations between estimated fatty acid desaturase activities in serum lipids and adipose tissue in humans: links to obesity and insulin resistance. Lipids Health Dis 2009; 8: 37.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Warensjo E, Sundstrom J, Lind L, Vessby B . Factor analysis of fatty acids in serum lipids as a measure of dietary fat quality in relation to the metabolic syndrome in men. Am J Clin Nutr 2006; 84: 442–448.

    Article  PubMed  Google Scholar 

  35. Fevre C, Bellenger S, Pierre AS, Minville M, Bellenger J, Gresti J et al. The metabolic cascade leading to eicosanoid precursors—desaturases, elongases, and phospholipases A2—is altered in Zucker fatty rats. Biochim Biophys Acta 2011; 1811: 409–417.

    Article  CAS  PubMed  Google Scholar 

  36. Wang Y, Botolin D, Xu J, Christian B, Mitchell E, Jayaprakasam B et al. Regulation of hepatic fatty acid elongase and desaturase expression in diabetes and obesity. J Lipid Res 2006; 47: 2028–2041.

    Article  CAS  PubMed  Google Scholar 

  37. Sargent JR . Fish oils and human diet. Br J Nutr 1997; 78 (Suppl 1): S5–S13.

    Article  CAS  PubMed  Google Scholar 

  38. Baylin A, Siles X, Donovan-Palmer A, Fernandez X, Campos H . Fatty acid composition of Costa Rican foods including trans fatty acid content. J Food Compost Anal 2007; 20: 182–192.

    Article  CAS  Google Scholar 

  39. Emken EA, Adlof RO, Duval SM, Nelson GJ . Effect of dietary docosahexaenoic acid on desaturation and uptake in vivo of isotope-labeled oleic, linoleic, and linolenic acids by male subjects. Lipids 1999; 34: 785–791.

    Article  CAS  PubMed  Google Scholar 

  40. Patel PS, Sharp SJ, Jansen E, Luben RN, Khaw KT, Wareham NJ et al. Fatty acids measured in plasma and erythrocyte-membrane phospholipids and derived by food-frequency questionnaire and the risk of new-onset type 2 diabetes: a pilot study in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk cohort. Am J Clin Nutr 2010; 92: 1214–1222.

    Article  CAS  PubMed  Google Scholar 

  41. Hodge AM, English DR, O'Dea K, Sinclair AJ, Makrides M, Gibson RA et al. Plasma phospholipid and dietary fatty acids as predictors of type 2 diabetes: interpreting the role of linoleic acid. Am J Clin Nutr 2007; 86: 189–197.

    Article  CAS  PubMed  Google Scholar 

  42. Krachler B, Norberg M, Eriksson JW, Hallmans G, Johansson I, Vessby B et al. Fatty acid profile of the erythrocyte membrane preceding development of Type 2 diabetes mellitus. Nutr Metab Cardiovasc Dis 2008; 18: 503–510.

    Article  CAS  PubMed  Google Scholar 

  43. Kroger J, Zietemann V, Enzenbach C, Weikert C, Jansen EH, Doring F et al. Erythrocyte membrane phospholipid fatty acids, desaturase activity, and dietary fatty acids in relation to risk of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Am J Clin Nutr 2011; 93: 127–142.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by the National Institutes of Health HL49086 and HL60692.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Campos.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on European Journal of Clinical Nutrition website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cespedes, E., Baylin, A. & Campos, H. Adipose tissue n-3 fatty acids and metabolic syndrome. Eur J Clin Nutr 69, 114–120 (2015). https://doi.org/10.1038/ejcn.2014.150

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ejcn.2014.150

This article is cited by

Search

Quick links