Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Metabolic syndrome, diabetes mellitus, cardiovascular and neurodegenerative diseases

Pleiotropic preventive effects of dietary polyphenols in cardiovascular diseases

Abstract

Polyphenols are common constituents of the diet, and research on their health benefits has developed quickly over the past few years. Our purpose is to review recent findings highlighting daily dietary polyphenol intake and the diverse function of polyphenols and their possible relationships to cardiovascular disease (CVD). Several cohort studies have reported an inverse relationship between the daily consumption of polyphenols and CVD risk. Many studies showed that beverages could be a large source of polyphenols. Our previous findings provide that Japanese people intake polyphenols mainly from beverages, especially coffee and green tea (in descending order of polyphenol content). Many kinds of polyphenols act as an antioxidant against low-density lipoprotein oxidation, which is known to promote atherosclerosis. Recent accumulating evidence suggests that dietary polyphenols could exert their cardioprotective actions through their potential to improve metabolic disorder and vascular inflammation. These findings raise the possibility that polyphenols have a wide variety of roles in the intestine, liver and vascular tissue. In addition to identifying mechanisms of polyphenol bioactivity by basic research, much more epidemiological and clinical evidence linking reduced cardiovascular risk with dietary polyphenols intake are needed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL . Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 1989; 320: 915–924.

    Article  CAS  Google Scholar 

  2. Dauchet L, Amouyel P, Dallongeville J . Fruits, vegetables and coronary heart disease. Nat Rev Cardiol 2009; 6: 599–608.

    Article  Google Scholar 

  3. Hertog MG, Feskens EJ, Kromhout D . Antioxidant flavonols and coronary heart disease risk. Lancet 1997; 349: 699.

    Article  CAS  Google Scholar 

  4. McCullough ML, Peterson JJ, Patel R, Jacques PF, Shah R, Dwyer JT . Flavonoid intake and cardiovascular disease mortality in a prospective cohort of USA adults. Am J Clin Nutr 2012; 95: 454–464.

    Article  CAS  Google Scholar 

  5. Neveu V, Perez-Jimenez J, Vos F, Crespy V, du Chaffaut L, Mennen L et al. Phenol-explorer: an online comprehensive database on polyphenol contents in foods. Database (Oxford) 2010, 2010: bap024.

  6. Kesse-Guyot E, Fezeu L, Andreeva VA, Touvier M, Scalbert A, Hercberg S et al. Total and specific polyphenol intakes in midlife are associated with cognitive function measured 13 years later. J Nutr 2012; 142: 76–83.

    Article  CAS  Google Scholar 

  7. George S, Brat P, Alter P, Amiot MJ . Rapid determination of polyphenols and vitamin C in plant-derived products. J Agric Food Chem 2005; 53: 1370–1373.

    Article  CAS  Google Scholar 

  8. Fukushima Y, Ohie T, Yonekawa Y, Yonemoto K, Aizawa H, Mori Y et al. Coffee and green tea as a large source of antioxidant polyphenols in the Japanese population. J Agric Food Chem 2009; 57: 1253–1259.

    Article  CAS  Google Scholar 

  9. Diaz MN, Frei B, Vita JA, Keaney JF Jr . Antioxidants and atherosclerotic heart disease. N Engl J Med 1997; 337: 408–416.

    Article  CAS  Google Scholar 

  10. Renaud S, de Lorgeril M . Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 1992; 339: 1523–1526.

    Article  CAS  Google Scholar 

  11. Kondo K, Matsumoto A, Kurata H, Tanahashi H, Koda H, Amachi T et al. Inhibition of oxidation of low-density lipoprotein with red wine. Lancet 1994; 344: 1152.

    Article  CAS  Google Scholar 

  12. Kondo K, Hirano R, Matsumoto A, Igarashi O, Itakura H . Inhibition of LDL oxidation by cocoa. Lancet 1996; 348: 1514.

    Article  CAS  Google Scholar 

  13. Ohmori R, Iwamoto T, Tago M, Takeo T, Unno T, Itakura H et al. Antioxidant activity of various teas against free radicals and LDL oxidation. Lipids 2005; 40: 849–853.

    Article  CAS  Google Scholar 

  14. Kamiyama M, Kishimoto Y, Tani M, Andoh K, Utsunomiya K, Kondo K . Inhibition of low-density lipoprotein oxidation by Nagano purple grape (Vitis vinifera × Vitis labrusca). J Nutr Sci Vitaminol (Tokyo) 2009; 55: 471–478.

    Article  CAS  Google Scholar 

  15. Nagai M, Tani M, Kishimoto Y, Iizuka M, Saita E, Toyozaki M et al. Sweet potato (Ipomoea batatas L.) leaves suppressed oxidation of low density lipoprotein (LDL) in vitro and in human subjects. J Clin Biochem Nutr 2011; 48: 203–208.

    Article  Google Scholar 

  16. Saita E, Kishimoto Y, Tani M, Iizuka M, Toyozaki M, Sugihara N et al. Antioxidant activities of Perilla frutescens against low-density lipoprotein oxidation in vitro and in human subjects. J Oleo Sci 2012; 61: 113–120.

    Article  CAS  Google Scholar 

  17. van Dam RM, Feskens EJ . Coffee consumption and risk of type 2 diabetes mellitus. Lancet 2002; 360: 1477–1478.

    Article  Google Scholar 

  18. Huxley R, Lee CM, Barzi F, Timmermeister L, Czernichow S, Perkovic V et al. Coffee, decaffeinated coffee, and tea consumption in relation to incident type 2 diabetes mellitus: a systematic review with meta-analysis. Arch Intern Med 2009; 169: 2053–2063.

    Article  Google Scholar 

  19. Iso H, Date C, Wakai K, Fukui M, Tamakoshi A . The relationship between green tea and total caffeine intake and risk for self-reported type 2 diabetes among Japanese adults. Ann Intern Med 2006; 144: 554–562.

    Article  Google Scholar 

  20. Torronen R, Sarkkinen E, Tapola N, Hautaniemi E, Kilpi K, Niskanen L . Berries modify the postprandial plasma glucose response to sucrose in healthy subjects. Br J Nutr 2009; 103: 1094–1097.

    PubMed  Google Scholar 

  21. Wilson T, Singh AP, Vorsa N, Goettl CD, Kittleson KM, Roe CM et al. Human glycemic response and phenolic content of unsweetened cranberry juice. J Med Food 2008; 11: 46–54.

    Article  CAS  Google Scholar 

  22. Hlebowicz J, Darwiche G, Bjorgell O, Almer LO . Effect of cinnamon on postprandial blood glucose, gastric emptying, and satiety in healthy subjects. Am J Clin Nutr 2007; 85: 1552–1556.

    Article  CAS  Google Scholar 

  23. Gin H, Rigalleau V, Caubet O, Masquelier J, Aubertin J . Effects of red wine, tannic acid, or ethanol on glucose tolerance in non-insulin-dependent diabetic patients and on starch digestibility in vitro. Metabolism 1999; 48: 1179–1183.

    Article  CAS  Google Scholar 

  24. Thom E . The effect of chlorogenic acid enriched coffee on glucose absorption in healthy volunteers and its effect on body mass when used long-term in overweight and obese people. J Int Med Res 2007; 35: 900–908.

    Article  CAS  Google Scholar 

  25. Jeppesen J, Hein HO, Suadicani P, Gyntelberg F . Triglyceride concentration and ischemic heart disease: an eight-year follow-up in the Copenhagen Male Study. Circulation 1998; 97: 1029–1036.

    Article  CAS  Google Scholar 

  26. Vinson JA, Dabbagh YA . Effect of green and black tea supplementation on lipids, lipid oxidation and fibrinogen in the hamster: mechanisms for the epidemiological benefits of tea drinking. FEBS Lett 1998; 433: 44–46.

    Article  CAS  Google Scholar 

  27. Chan PT, Fong WP, Cheung YL, Huang Y, Ho WK, Chen ZY . Jasmine green tea epicatechins are hypolipidemic in hamsters (Mesocricetus auratus) fed a high fat diet. J Nutr 1999; 129: 1094–1101.

    Article  CAS  Google Scholar 

  28. Imai K, Nakachi K . Cross sectional study of effects of drinking green tea on cardiovascular and liver diseases. BMJ 1995; 310: 693–696.

    Article  CAS  Google Scholar 

  29. Sanders TA . Dietary fat and postprandial lipids. Curr Atheroscler Rep 2003; 5: 445–451.

    Article  Google Scholar 

  30. Mero N, Syvanne M, Taskinen MR . Postprandial lipid metabolism in diabetes. Atherosclerosis 1998; 141 (Suppl 1), S53–S55.

    Article  CAS  Google Scholar 

  31. Eckel RH, Grundy SM, Zimmet PZ . The metabolic syndrome. Lancet 2005; 365: 1415–1428.

    Article  CAS  Google Scholar 

  32. Shepherd J, Betteridge J, Van Gaal L . Nicotinic acid in the management of dyslipidaemia associated with diabetes and metabolic syndrome: a position paper developed by a European Consensus Panel. Curr Med Res Opin 2005; 21: 665–682.

    Article  CAS  Google Scholar 

  33. Kondo K, Hosoda K, Iwamoto T, Kusumoto A, Hirano R, Matsumoto A et al. Red wine improves postprandial status. In Symposium on Drugs Affecting Lipid Metabolism. Florence, Italy, 1998.

    Google Scholar 

  34. Toyoda-Ono Y, Yoshimura M, Nakai M, Fukui Y, Asami S, Shibata H et al. Suppression of postprandial hypertriglyceridemia in rats and mice by oolong tea polymerized polyphenols. Biosci Biotechnol Biochem 2007; 71: 971–976.

    Article  CAS  Google Scholar 

  35. Nakai M, Fukui Y, Asami S, Toyoda-Ono Y, Iwashita T, Shibata H et al. Inhibitory effects of oolong tea polyphenols on pancreatic lipase in vitro. J Agric Food Chem 2005; 53: 4593–4598.

    Article  CAS  Google Scholar 

  36. Wilson PW, Abbott RD, Castelli WP . High density lipoprotein cholesterol and mortality. The Framingham Heart Study. Arteriosclerosis 1988; 8: 737–741.

    Article  CAS  Google Scholar 

  37. Asztalos BF, Tani M, Schaefer EJ . Metabolic and functional relevance of HDL subspecies. Curr Opin Lipidol 2011; 22: 176–185.

    Article  CAS  Google Scholar 

  38. Hooper L, Kay C, Abdelhamid A, Kroon PA, Cohn JS, Rimm EB et al. Effects of chocolate, cocoa, and flavan-3-ols on cardiovascular health: a systematic review and meta-analysis of randomized trials. Am J Clin Nutr 2012; 95: 740–751.

    Article  CAS  Google Scholar 

  39. Glomset JA . The plasma lecithins:cholesterol acyltransferase reaction. J Lipid Res 1968; 9: 155–167.

    CAS  PubMed  Google Scholar 

  40. Wang N, Lan D, Chen W, Matsuura F, Tall AR . ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins. Proc Natl Acad Sci USA 2004; 101: 9774–9779.

    Article  CAS  Google Scholar 

  41. Bortnick AE, Rothblat GH, Stoudt G, Hoppe KL, Royer LJ, McNeish J et al. The correlation of ATP-binding cassette 1 mRNA levels with cholesterol efflux from various cell lines. J Biol Chem 2000; 275: 28634–28640.

    Article  CAS  Google Scholar 

  42. Wang N, Silver DL, Thiele C, Tall AR . ATP-binding cassette transporter A1 (ABCA1) functions as a cholesterol efflux regulatory protein. J Biol Chem 2001; 276: 23742–23747.

    Article  CAS  Google Scholar 

  43. Kennedy MA, Barrera GC, Nakamura K, Baldan A, Tarr P, Fishbein MC et al. ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation. Cell Metab 2005; 1: 121–131.

    Article  CAS  Google Scholar 

  44. Ji Y, Jian B, Wang N, Sun Y, Moya ML, Phillips MC et al. Scavenger receptor BI promotes high density lipoprotein-mediated cellular cholesterol efflux. J Biol Chem 1997; 272: 20982–20985.

    Article  CAS  Google Scholar 

  45. Navab M, Reddy ST, Van Lenten BJ, Fogelman AM . HDL and cardiovascular disease: atherogenic and atheroprotective mechanisms. Nat Rev Cardiol 2011; 8: 222–232.

    Article  CAS  Google Scholar 

  46. Rosenblat M, Volkova N, Coleman R, Almagor Y, Aviram M . Antiatherogenicity of extra virgin olive oil and its enrichment with green tea polyphenols in the atherosclerotic apolipoprotein-E-deficient mice: enhanced macrophage cholesterol efflux. J Nutr Biochem 2008; 19: 514–523.

    Article  CAS  Google Scholar 

  47. Uto-Kondo H, Ayaori M, Ogura M, Nakaya K, Ito M, Suzuki A et al. Coffee consumption enhances high-density lipoprotein-mediated cholesterol efflux in macrophages. Circ Res 2010; 106: 779–787.

    Article  CAS  Google Scholar 

  48. Li L, Tatake RJ, Natarajan K, Taba Y, Garin G, Tai C et al. Fluid shear stress inhibits TNF-mediated JNK activation via MEK5-BMK1 in endothelial cells. Biochem Biophys Res Commun 2008; 370: 159–163.

    Article  CAS  Google Scholar 

  49. Rao RM, Yang L, Garcia-Cardena G, Luscinskas FW . Endothelial-dependent mechanisms of leukocyte recruitment to the vascular wall. Circ Res 2007; 101: 234–247.

    Article  CAS  Google Scholar 

  50. Suwaidi JA, Hamasaki S, Higano ST, Nishimura RA, Holmes DR, Lerman A . Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction. Circulation 2000; 101: 948–954.

    Article  CAS  Google Scholar 

  51. Schachinger V, Britten MB, Zeiher AM . Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation 2000; 101: 1899–1906.

    Article  CAS  Google Scholar 

  52. Anderson TJ, Uehata A, Gerhard MD, Meredith IT, Knab S, Delagrange D et al. Close relation of endothelial function in the human coronary and peripheral circulations. J Am Coll Cardiol 1995; 26: 1235–1241.

    Article  CAS  Google Scholar 

  53. Karatzis EN, Ikonomidis I, Vamvakou GD, Papaioannou TG, Protogerou AD, Andreadou I et al. Long-term prognostic role of flow-mediated dilatation of the brachial artery after acute coronary syndromes without ST elevation. Am J Cardiol 2006; 98: 1424–1428.

    Article  Google Scholar 

  54. Hashimoto M, Kim S, Eto M, Iijima K, Ako J, Yoshizumi M et al. Effect of acute intake of red wine on flow-mediated vasodilatation of the brachial artery. Am J Cardiol 2001; 88: 1457–1460. A1459.

    Article  CAS  Google Scholar 

  55. Heiss C, Kleinbongard P, Dejam A, Perre S, Schroeter H, Sies H et al. Acute consumption of flavanol-rich cocoa and the reversal of endothelial dysfunction in smokers. J Am Coll Cardiol 2005; 46: 1276–1283.

    Article  CAS  Google Scholar 

  56. Vlachopoulos C, Aznaouridis K, Alexopoulos N, Economou E, Andreadou I, Stefanadis C . Effect of dark chocolate on arterial function in healthy individuals. Am J Hypertens 2005; 18: 785–791.

    Article  CAS  Google Scholar 

  57. Alexopoulos N, Vlachopoulos C, Aznaouridis K, Baou K, Vasiliadou C, Pietri P et al. The acute effect of green tea consumption on endothelial function in healthy individuals. Eur J Cardiovasc Prev Rehabil 2008; 15: 300–305.

    Article  Google Scholar 

  58. Hooper L, Kroon PA, Rimm EB, Cohn JS, Harvey I, Le Cornu KA et al. Flavonoids, flavonoid-rich foods, and cardiovascular risk: a meta-analysis of randomized controlled trials. Am J Clin Nutr 2008; 88: 38–50.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Kondo.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kishimoto, Y., Tani, M. & Kondo, K. Pleiotropic preventive effects of dietary polyphenols in cardiovascular diseases. Eur J Clin Nutr 67, 532–535 (2013). https://doi.org/10.1038/ejcn.2013.29

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ejcn.2013.29

Keywords

This article is cited by

Search

Quick links