Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Vitamins and plant ingredients

Sources of vegetables, fruits and vitamins A, C and E among five ethnic groups: Results from a multiethnic cohort study

Abstract

Objectives:

Data are limited on how dietary sources of food and nutrients differ among ethnic groups. The objective of this study was to determine the main sources of fruit, vegetables and vitamins A, C and E for five ethnic groups.

Subjects/methods:

Dietary data were collected using a validated quantitative food frequency questionnaire from participants in a multiethnic cohort in Hawaii and Los Angeles county between 1993 and 1996. Data were analyzed for 186 916 participants representing five ethnic groups: African-Americans, Japanese-Americans, native Hawaiians, Latinos and Caucasians.

Results:

Lettuce was the most consumed vegetable (6.0–9.9%) in all ethnic–sex groups, except among African-American women and Mexican-born Latino men and women. Oranges and bananas contributed more than one-quarter to total fruit intake among all groups. Overall, more ethnic variation in food choices was observed for the top 10 vegetables than for fruits. The top sources of vitamins A, C and E were carrots, orange/grapefruit/pomelo and combined dishes, respectively. Among the micronutrients studied, the greatest ethnic variation in foods consumed was observed for the top 10 food sources of vitamin A.

Conclusions:

This is the first study providing data on the main types of fruit and vegetables consumed and the major sources of vitamins A, C and E among these ethnic groups in the U.S. Such data are valuable for developing and implementing public health strategies to meet the USDA dietary recommendations and for guiding ethnicity-specific nutrition education and intervention programs.

Introduction

Dietary guidelines from the United States Department of Agriculture (USDA), American Heart Association, National Cancer Institute and American Diabetes Association recommend increasing the consumption of fruits and vegetables to a certain energy intake level to decrease the risk for chronic disease.1, 2, 3, 4, 5 Previous research from the multiethnic cohort (MEC) study found that adherence to these dietary recommendations varied across ethnic groups and energy intake levels, with less than half of the participants meeting the minimum requirements among some ethnic–sex groups.6, 7 Increasing the intake of antioxidant-rich fruit and vegetables while simultaneously limiting energy intake is challenging, as many dishes, such as salads and casseroles, may have additional energy-dense ingredients—for example, added sugars, dressings, margarine or butter. To meet this goal, it is necessary to characterize the sources of fruits, vegetables and antioxidants.

Furthermore, substantial evidence suggests that diet is a modifiable risk factor for chronic diseases,8 and improving diet, especially by increasing fruit and vegetable consumption, as well as antioxidant vitamins (A,C,E), could result in a decrease in the incidence of and mortality from cardiovascular disease, cancer and other chronic diseases.9, 10, 11, 12, 13, 14, 15, 16, 17 For example, risk of coronary heart disease decreased by 4 and 7% with the daily intake of each additional portion of fruit and vegetable combined and fruit alone, respectively.11 This effect may be due to their antioxidant vitamins A, C and E, which have been shown to decrease the risk of heart disease.17 Cancer, cardiovascular disease and diabetes were responsible for approximately 60% of all deaths in the U.S. in 2005.18 In addition, rates of these chronic conditions vary by ethnic group. In 2005, age-adjusted cancer mortality rates for men and women, respectively, were 294 and 178 for African-Americans (AfAm), 227 and 159 for Caucasians, 153 and 102 for Latinos and 133 and 95 for Asians and Pacific Islanders per 100 000 population.18 In the same year, age-adjusted mortality rates of heart disease were 330 and 228 for AfAm, 262 and 170 for Caucasians, 192 and 129 for Latinos and 141 and 92 for Asians and Pacific Islanders per 100 000 men and women, respectively.18 With the increasing proportion of ethnic minority groups in the U.S.,19 and the growing burden of chronic diseases, there is a need for ethnicity-specific health data related to cost-effective interventions such as diet modification.

To our knowledge, there have been no studies on the intake of antioxidant-rich fruits and vegetables among ethnic groups in the U.S. using the USDA-standardized food grouping approach and food composition tables. Such data are necessary to show how the consumption of fruits and vegetables varies in different ethnic groups, but are also important in determining which specific fruit, vegetable and nutrient should be targeted when implementing ethnicity-specific interventions. A well-balanced diet incorporating all food groups is paramount to optimal health. Data on food sources for the USDA major food groups and on specific nutrients among participants in the MEC are being examined in a series of analyses.20, 21 The focus of this study was to determine the main types of fruits and vegetables and the major 10 dietary sources of vitamins A, C and E in five ethnic groups in the U.S.

Materials and Methods

The MEC was established in Hawaii and Los Angeles, California, to investigate lifestyle exposures in relation to disease outcomes. Study design, recruitment procedures and baseline characteristics have been reported elsewhere.22 In brief, 201 257 men and women aged 45–75 years representing five ethnic groups (AfAm, Japanese Americans (JpAm), Native Hawaiians (NH), Latinos (born in Mexico and Central/South America: Latino-Mexican; born in the U.S.: Latino-US) and Caucasians) were enrolled into the study between 1993 and 1996. Ethnicity was self-defined. Response rates varied from 20% in Latinos to 49% in JpAm.

Data were collected using a self-administered, mailed questionnaire, including a 17-page quantitative food frequency questionnaire (QFFQ), that collected data on consumption of 180 food items over the past year.22 The QFFQ was based on a modified version of an extensively used interview method that was validated in multiethnic populations.23 The self-administered version used in this study was developed using three-day measured dietary records from 60 men and 60 women of each of the five ethnic groups. Ethnicity-specific foods (35 items) were also included irrespective of their contribution to the diet. The QFFQ inquired about the amount of food consumed based on a choice of three portion sizes specific to each food item listed, which were also shown in representative photographs, and the usual intake frequency based on the categories ranging from ‘never or hardly ever’ to ‘two or more times a day.’ A substudy was conducted to validate and calibrate the QFFQ using three repeated 24-hour dietary recalls collected from each ethnic–sex group.23 Average correlation coefficients for all nutrients ranged from 0.57 in Caucasian men to 0.26 in AfAm women. For nutrient densities, average correlations were about twice as high, with a range from 0.74 to 0.57 across the ethnic–sex strata.

For the current analyses, those with extreme energy intake (< 500 kcal/day or>5000 kcal/day; 4% of respondents) were excluded. Latino-Mexican (that is, born in Mexico or Central/South America) (n=21 083) were separated from Latino-US (that is, born in the U.S.) (n=21 868); Latinos born in the Caribbean were also excluded because of the small number of participants. The exclusions across the ethnic groups were 3255 (9.3%) AfAm, 342 (2.4%) NH, 5673 (10.0%) JpAm, 4487 (9.5%) Latino and 2123 (4.3%) Caucasians, leaving a total of 186 916 participants in this analysis.

The standardized food grouping scheme developed by the USDA was applied to our data for quantifying intakes in terms of servings.24 All food items were categorized into the five food groups and their corresponding subgroups: vegetables (dark green, deep yellow, potato, starchy vegetables, tomato and other vegetables), fruits (citrus, melons, berries and other fruits), meat and meat alternatives (all meat, fish and poultry, organ meat, frankfurter/sausage/lunch meats, poultry, egg, nuts, dry beans and peas), grains (whole grain, non-whole grain), and dairy products (milk, yogurt and cheese). One serving of vegetable was half cup of raw or cooked vegetable, one cup of raw leafy vegetable, or half cup of vegetable juice.2 The percentage contribution of each food item to the total consumption of vegetables, fruits and vitamins A, C and E was also determined. Because mixed dishes have been shown to be an important source of vegetables and fruit,25 all mixed dishes were disaggregated into their component parts and allocated to servings of each food group. Total serving intakes of fruit and vegetables were computed for each individual by summing the servings across the appropriate food items on the QFFQ. The mean daily serving intakes of fruit and vegetables among the five ethnic groups in the MEC have been previously reported.6, 7 Nutrient intakes were analyzed on the basis of a unique food composition table that was extended and adapted from the USDA food composition database.26 Graphical presentations were prepared using Stata (StataCorp. 2003. Stata Statistical Software: Release 8. College Station, TX: StataCorp LP.). The study protocol was approved by the institutional review boards of the university of Hawaii and the university of Southern California.

Results

Demographic information for the 186 916 participants included in this study is presented in Table 1. The mean age for men ranged from 57 years (NH) to 62 years (AfAm) across the five ethnic groups; for women, the mean age ranged from 56 years (NH) to 61 years (AfAm and JpAm). NH men and women had the highest mean daily energy intake (2 760 and 2 370 kcal, respectively), whereas NH men and AfAm women had the highest average body mass index (28.5 and 28.4 kg/m2, respectively) among all groups. There was more variation in daily fruit and vegetable intake between ethnic groups than between men and women. The average number of servings for vegetable intake was highest among native Hawaiians and Latino-Mexicans and lowest among AfAm. For both sexes, the average fruit intake was comparable among most ethnic groups, but was slightly higher among Latino-Mexicans. Adherence with dietary recommendations for vegetable intake ranged from 43% (AfAm) to 62% (Latino-Mexican) among men and from 51% (AfAm) to 69% (NH) among women. In each sex group, NH men and women had the lowest adherence levels with fruit intake recommendations (36 and 48%, respectively), whereas Latino-Mexican men and women exhibited the highest levels of adherence (54 and 66%, respectively). Adherence with dietary recommendations for both vegetable and fruit intake was higher among women in all cases when compared within the same ethnic group.

Table 1 Demographic information of the participants

Lettuce (dark and light green), the greatest contributor to total vegetable intake across all ethnic groups except Latino-Mexican, accounted for a combined 9.7% (AfAm men) to 19.0% (JpAm women) of total intake (Figure 1). The largest ethnic variation in percentage contribution to vegetable intake was for lettuce. The percentage contribution to vegetable intake for other commonly consumed foods (carrots, tomatoes, broccoli) was more consistent, ranging by only 2–3% across ethnic groups. Among Latino-Mexican men and women, tomato/vegetable soup was a greater contributor compared with other ethnic groups. Latino-Mexican men also constituted the only group for whom dried bean/pea soups and Mexican meat soup/stews were top contributors. Stir fries and cabbage were among the top 10 contributors for JpAm of both sexes, whereas poi (fermented taro root) was among the top 10 for NH only (5.0% each for NH men and women). Dark leafy greens were among the top 10 for only three ethnic groups—JpAm, NH and AfAm—and the pattern of percentage contribution for this food item was similar for both sexes in each of these ethnic groups. Starchy vegetables (for example, carrots and corn) and potatoes were top sources of vegetables across most ethnic–sex groups, especially among Caucasian women, Caucasian men and AfAm men for whom baked/boiled white potatoes alone contributed 4.8, 4.6 and 4.0%, respectively, to the total intake. Chili and olives were among the top sources only for Latino-Mexican men and Latino-US men and women. Deep yellow vegetables contributed less than 11% to total vegetable intake across all ethnic–sex groups. Dark green vegetables varied in their rank as top source between ethnic groups, with Latino groups (Latino-Mexican and Latino-US) reporting the least and JpAm and Caucasians the most (6.3–22.6%).

Figure 1
figure1

Ten major sources of vegetables and the percent contribution of each item by sex and ethnicity.

The top 10 sources of fruits contributed up to 85% (AfAm) to the total fruit intake for all ethnic groups (Figure 2). Among the top three major sources of fruits across all ethnic–sex groups, oranges and bananas accounted for more than one quarter (26.4–32.9%) of total fruit consumed. Tangerines/mandarin oranges were also an important contributor for all groups, except for Caucasian women. Fruit juice (that is, orange/grapefruit juice and other fruit juice/drinks) contributed the most in NH men and women at 18.4 and 16.0%, respectively, of total fruit intake and the least in Latino-Mexican men and women at 8.7 and 7.7%, respectively. Mangoes were among the top 10 fruit sources for JpAm and NH only (of both sexes); papaya was also a major contributor in these two ethnic groups, as well as in Caucasians. Pears were among the top 10 for men and women in both Latino groups, as well as for AfAm men.

Figure 2
figure2

Ten major sources of fruits and the percent contribution of each item by sex and ethnicity.

The percentage contribution for the main sources of Vitamin A was relatively consistent across ethnic groups (Figure 3). Carrots were the primary source of vitamin A, accounting for 17.0–34.5% of total intake across all ethnic–sex groups. Cereals and dark greens were also among the major sources of vitamin A for all groups, except for Latino-Mexican men and women for whom dark greens contributed 4.0 and 3.7%, respectively. Combined meat–vegetable dishes were among the top contributors to vitamin A for all groups, except for Latino-Mexican women. Of all the ethnic–sex groups, fruits and vegetables as sources of vitamin A contributed the least in Latino-Mexican men (35.9%) and the most in JpAm women (60.8%).

Figure 3
figure3

Ten major sources of Vitamin A and the percent contribution of each item by sex and ethnicity.

Orange/grapefruit/pomelo contributed from 25.1% (Latino-Mexican women) to 34.1% (AfAm men) to total vitamin C intake for all ethnic–sex groups (Figure 4). Tropical fruits were also an important source of vitamin C across all groups, especially for JpAm men and women (15.7 and 17.9%, respectively). Fruit juice was a top-five source of vitamin C in all groups. The percentage contribution ranged from 7.6 and 7.0% for Caucasian men and women, respectively, to 10.8 and 9.9% for NH men and women, respectively. Broccoli/cauliflower was the greatest vegetable source of vitamin C for all ethnic–sex groups, contributing the least in NH and the most in AfAm and Caucasians. Salsa was among the top 10 vitamin C contributors for Latino-Mexicans only, whereas cabbage/coleslaw was included in the top 10 for JpAm only.

Figure 4
figure4

Ten major sources of Vitamin C and the percent contribution of each item by sex and ethnicity.

Accounting for 10.2% (Latino-Mexican men) to 23.7% (Latino-Mexican women) of total intake, cereals emerged as the top source of vitamin E across all ethnic–sex groups (Figure 5). Fruit and vegetable sources provided less than 13% of total vitamin E intake for all groups. The highest percentage contribution was observed among JpAm men and women, for whom fruits and vegetables contributed 9.1 and 12.7% of vitamin E; by comparison, Latino-US men and women had the lowest contribution from fruits and vegetables, at 3.2 and 6.1%, respectively (data not shown). Peanuts/other nuts were a major source of vitamin E for all groups except for Latino-Mexican. Other sources were less variable across ethnic–sex groups and include regular salad dressing, fish and chicken/turkey. Several food items appeared in the top 10 vitamin E sources for Latino-Mexicans only, including crackers/chips/popcorn, taco salad and sweets (muffins/doughnuts, cookies/cake, tarts/pies).

Figure 5
figure5

Ten major sources of Vitamin E and the percent contribution of each item by sex and ethnicity.

Discussion

The percentage of the U.S. population from nonCaucasian ethnic backgrounds is increasing.27, 28 Ethnic minority groups in the U.S. are experiencing a change from their traditional diet to a more ‘westernized’ diet.29 Previous studies showed lower than recommended intakes of fruit and vegetables in the MEC population,6, 7 and up to 73% of this population did not meet the recommendation for vitamin E intake.30 The percentage of the MEC population meeting the reference levels for vitamin C and A intake was relatively high (approximately 90%) among supplement users; however, among the majority who were not taking supplements (77%), the proportion of participants meeting nutrient adequacy for vitamins A and C was considerably lower (64 and 77%, respectively).30 High antioxidant intake has consistently been linked to reduced cancer risk, and longitudinal analyses, which included adjustment for energy intake, have demonstrated that MEC participants with higher dietary intake of fruits and vegetables have lower cancer mortality rates.31 Regarding nutrient intake, a study examining racial differences in dietary intake of antioxidant nutrients (vitamin C, vitamin E and carotenoids) found that African-Americans reported lower intakes of most antioxidants and also had lower plasma antioxidant concentrations of vitamin E and carotenoids, suggesting that these findings may be contributing factors to the disproportionately higher risk of cancer among African-Americans.32 Fruits and vegetables were the main dietary sources of vitamins A, C and E for each ethnic group in this study. These results allow us to identify, target and promote specific antioxidant-rich fruits and vegetables that are most preferred by different ethnic populations.

Of interest, very few dishes identified as the top sources for vegetable and fruit intake were found among the top dishes for energy intake reported in previous MEC findings.20 Only pasta dishes with tomato/cheese sauce, stir fried meat and vegetables, orange/grapefruit/pomelo, and bananas were listed among the top 10 food sources of energy intake, and the contribution of these foods/dishes to total energy (reported in the previous study) was relatively small in all cases (5%). These findings suggest that fruits and vegetables are not frequently incorporated into dishes contributing to energy intake. Thus, dietary interventions to promote addition of healthy fruits and vegetables in dishes that contribute more to energy intake among all ethnic groups, such as meat dishes,20 may serve to address deficiencies observed in recommended intake levels.

The dietary guidelines of the American Diabetes Association, USDA, National Cancer Institute and the American Heart Association are created to help the U.S. population make healthful food choices to improve dietary adequacy and reduce the risk of chronic diseases,1, 2, 3, 4, 5 for example, the USDA dietary guidelines recommend eating more than five servings of fruit and vegetables per day. However, these guidelines need to consider the ethnicity-specific preferences in food consumption to make culturally appropriate recommendations. The results from this study indicate that sources of fruit, vegetables and nutrients can vary across ethnic groups, but are highly comparable for sexes within the ethnic groups. For the main sources of fruits and vegetables, the ethnic variation in percentage contribution was most apparent for vegetable intake. As expected, some ethnic preferences for specific foods were also identified based on the top 10 food sources for vegetables and fruits, for example, tomato/vegetable soup was the top source of vegetable intake among Latino-Mexican men, starchy vegetables were the top source among AfAm, and cabbage and stir fries appeared frequently for the JpAm group. The dietary sources of vegetable consumption also differed among Latinos by birthplace, and the results suggest that there are some ethnicity-specific preferences for fruit intake. The observation of several high-energy food sources for vitamin E intake among Latino-Mexicans also indicates that some ethnic groups may be susceptible to poorer food choices. Knowledge of such food choices could provide clinicians with an effective means of improving adherence with dietary recommendations by promoting specific preferred foods among ethnic groups and facilitating tailoring of dietary interventions. These findings demonstrate a need for dietitians, nutrition researchers and educators to incorporate cultural identities and culinary customs into ethnicity-specific public health messages when promoting fruit and vegetable consumption.

There are several strengths in this study. It is the first study comparing dietary sources of fruit, vegetable and vitamins A, C and E among these specific ethnic groups in the U.S; the MEC includes a large representative sample size of each of these five ethnic groups. Although NHANES III had a large sample of AfAms and Latinos born in Mexico,33 it did not include NH or JpAm. The Continuing Surveys of Food Intake by Individuals 1994–96 collected dietary intake data from 16 103 adults,34 which included AfAm and Latinos; however, the samples of these two populations were relatively small. A validated QFFQ developed specifically for the multiethnic population was used to ensure standardized data collection among the five ethnic groups. Furthermore, a standard method was used for grouping fruits and vegetables for all ethnic groups based on national recommendations.35 Finally, the disaggregation of composite dishes into their respective fruit and vegetable components allowed a precise assessment of fruit and vegetable intake between groups.24 O’Brien et al. (2003) reported that failure to include composite foods when estimating fruit and vegetable intake may result in bias.25 Certain ethnic groups in the current study, such as Latinos, consumed vegetables mostly as part of soups, and therefore exclusion of these composite dishes would underestimate overall intake for this ethnic group.

Several potential limitations also warrant discussion. Recall bias may have had an impact on the results if specific foods were preferentially documented during collection of the baseline dietary data for the MEC study. Measurement errors may also be a matter of concern if certain foods were not captured on the QFFQ, or if there were inaccuracies in recording portion sizes. Previous findings also indicate that the validity of QFFQs is higher among women,36 or could vary by food group,37 and thus it is possible that ethnicity influenced reporting. Although the results from the calibration study were similar across ethnic groups and the QFFQ used in the MEC appears to capture total intake relatively well,22, 23 alternative methods such as food diaries, 24-hour dietary recalls or addition of open-ended responses for food choices on the questionnaire may have reduced the likelihood of these potential biases. In addition, there were a relatively large number of exclusions due to missing data, and the proportion of excluded participants did vary somewhat across ethnic groups, ranging from 2.4% among NH participants to 10% for the JpAm group. Although it is possible that these differences in response rates may have introduced selection bias, with the large sample sizes that were still maintained in these analyses, considerable dietary variation would have had to occur in order to have influenced the results. Variation in food consumption patterns may also have been diminished as a result of the availability of ethnic food choices to the entire U.S. population, as well as westernization of diets for individuals from the various ethnic backgrounds. As the data for this study were collected over 15 years ago, more recent data would be helpful to determine whether the dietary patterns observed in this study are generalizable to the current population and whether the consumption patterns of various ethnic groups have changed over time.

Conclusions

We have provided for the first time comparable data on the dietary sources of fruits, vegetables, antioxidants and vitamins A, C and E in a large representative sample of five ethnic groups using a standardized grouping approach. Such data are valuable for developing and implementing public health strategies to meet the national dietary recommendations, as well as for guiding nutrition education and intervention programs to reduce the risk of cancer and other chronic diseases in these high-risk populations.

References

  1. 1

    Eyre H, Kahn R, Robertson RM . Preventing cancer, cardiovascular disease, and diabetes: a common agenda for the American cancer society, the American diabetes association and the American heart association. CA Cancer J Clin 2004; 54: 190–207.

    Article  Google Scholar 

  2. 2

    U.S. Department of Health And Human Services, U.S. Department of Agriculture. Dietary Guidelines for Americans. U.S. Government Printing Office: Washington, DC, USA, 2005.

  3. 3

    Lichtenstein AH, Appel LJ, Brands M, Carnethon M, Daniels S, Franch HA et al. Diet and lifestyle recommendations revision 2006: a scientific statement from the american heart association nutrition committee. Circulation 2006 114: 82–96.

  4. 4

    Kushi LH, Byers T, Doyle C, Bandera EV, McCullough M, Gansler T et al. American cancer society guidelines on nutrition and physical activity for cancer prevention: reducing the risk of cancer with healthy food choices and physical activity. CA Cancer J Clin 2006; 56: 254–281.

    Article  Google Scholar 

  5. 5

    Bantle JP, Wylie-Rosett J, Albright AL, Apovian CM, Clark NG, Franz MJ et al. Nutrition recommendations and interventions for diabetes-2006: a position statement of the American Diabetes Association. Diabetes Care 2006; 29: 2140–2157.

    Article  Google Scholar 

  6. 6

    Sharma S, Murphy SP, Wilkens LR, Shen L, Hankin JH, Henderson B et al. Adherence to the food guide pyramid recommendations among Japanese Americans, Native Hawaiians, and whites: results from the multiethnic cohort study. J Am Diet Assoc 2003; 103: 1195–1198.

    Article  Google Scholar 

  7. 7

    Sharma S, Murphy SP, Wilkens LR, Shen L, Hankin JH, Monroe KR et al. Adherence to the Food Guide Pyramid recommendations among African Americans and Latinos: results from the Multiethnic Cohort. J Am Diet Assoc 2004; 104: 1873–1877.

    Article  Google Scholar 

  8. 8

    Van Duyn MA, Pivonka E . Overview of the health benefits of fruit and vegetable consumption for the dietetics professional: selected literature. J Am Diet Assoc 2000; 100: 1511–1521.

    CAS  Article  Google Scholar 

  9. 9

    Genkinger JM, Platz EA, Hoffman SC, Comstock GW, Fruit Helzlsouer KJ . vegetable, and antioxidant intake and all-cause, cancer, and cardiovascular disease mortality in a community-dwelling population in Washington County, Maryland. Am J Epidemiol 2004; 160: 1223–1233.

    Article  Google Scholar 

  10. 10

    Dauchet L, Ferrieres J, Arveiler D, Yarnell JW, Gey F, Ducimetiere P et al. Frequency of fruit and vegetable consumption and coronary heart disease in France and Northern Ireland: the PRIME study. Br J Nutr 2004; 92: 963–972.

    CAS  Article  Google Scholar 

  11. 11

    Dauchet L, Amouyel P, Hercberg S, Dallongeville J . Fruit and vegetable consumption and risk of coronary heart disease: a meta-analysis of cohort studies. J Nutr 2006; 136: 2588–2593.

    CAS  Article  Google Scholar 

  12. 12

    He FJ, Nowson CA, MacGregor GA . Fruit and vegetable consumption and stroke: meta-analysis of cohort studies. Lancet 2006; 367: 320–326.

    Article  Google Scholar 

  13. 13

    Demark-Wahnefried W, Rock CL, Patrick K, Byers T . Lifestyle interventions to reduce cancer risk and improve outcomes. Am Fam Physician 2008; 77: 1573–1578.

    PubMed  Google Scholar 

  14. 14

    Anand P, Kunnumakkara AB, Sundaram C, Harikumar KB, Tharakan ST, Lai OS et al. Cancer is a preventable disease that requires major lifestyle changes. Pharm Res 2008; 25: 2097–2116.

    CAS  Article  Google Scholar 

  15. 15

    Galimanis A, Mono ML, Arnold M, Nedeltchev K, Mattle HP . Lifestyle and stroke risk: a review. Curr Opin Neurol 2009; 22: 60–68.

    Article  Google Scholar 

  16. 16

    Nagura J, Iso H, Watanabe Y, Maruyama K, Date C, Toyoshima H et al. Fruit, vegetable and bean intake and mortality from cardiovascular disease among Japanese men and women: the JACC Study. Br J Nutr 2009; 102: 285–292.

    CAS  Article  Google Scholar 

  17. 17

    Lane JS, Magno CP, Lane KT, Chan T, Hoyt DB, Greenfield S . Nutrition impacts the prevalence of peripheral arterial disease in the United States. J Vasc Surg 2008; 48: 897–904.

    Article  Google Scholar 

  18. 18

    National Center for Health Statistics. Health, United States, 2008. National centre for health statistics: Hyattsville, MD, USA, 2009.

  19. 19

    Humes KR, Jones NA, Ramirez RR . Census Briefs: Overview of Race and Hispanic Origin. United States census bureau, 2011.

    Google Scholar 

  20. 20

    Sharma S, Wilkens LR, Shen L, Kolonel LN . Dietary sources of five nutrients in ethnic groups represented in the Multiethnic cohort. Br J Nutr 2012; 109: 1479–1489.

    Article  Google Scholar 

  21. 21

    Sharma S, Wilkens LR, Kolonel LN . Contribution of meat to vitamin B12, iron and zinc intakes in five ethnic groups in the USA: implications for developing food-based dietary guidelines. J Hum Nutr Diet 2013; 26: 156–168.

    CAS  Article  Google Scholar 

  22. 22

    Kolonel LN, Henderson BE, Hankin JH, Nomura AM, Wilkens LR, Pike MC et al. A multiethnic cohort in Hawaii and Los Angeles: baseline characteristics. Am J Epidemiol 2000; 151: 346–357.

    CAS  Article  Google Scholar 

  23. 23

    Stram DO, Hankin JH, Wilkens LR, Pike MC, Monroe KR, Park S et al. Calibration of the dietary questionnaire for a multiethnic cohort in Hawaii and Los Angeles. Am J Epidemiol 2000; 151: 358–370.

    CAS  Article  Google Scholar 

  24. 24

    U.S Department of Agriculture. Food Guide Pyramid. A Guide to Daily Food Choices 252, US Dept of Agriculture, Human nutrition information service: Washington, DC, USA, 1992, Home garden bulletin.

  25. 25

    O'Brien MM, Kiely M, Galvin M, Flynn A . The importance of composite foods for estimates of vegetable and fruit intakes. Public Health Nutr 2003; 6: 711–726.

    CAS  Article  Google Scholar 

  26. 26

    Sharma S, Murphy S, Wilkens L, Au D, Shen L, Kolonel L . Extending a multiethnic food composition table to include standardized food group servings. J Food Compost Anal 2003; 16: 485–495.

    Article  Google Scholar 

  27. 27

    Census Bureau (US). Projections of the Resident Population by Age, Sex, Race, and Hispanic Origin: 1999 to 2010 (Middle Series). 20 May 2010. Available from: http://www.census.gov/population/projections/data/national/np-d1.html. [cited 2013 Dec 15].

  28. 28

    Larsen LJ . The Foreign-Born Population in the United States: 2003. Current population reports. US Census Bureau: Washington, DC, USA, 2003, pp 20–551.

    Google Scholar 

  29. 29

    Satia-Abouta J, Patterson RE, Neuhouser ML, Elder J . Dietary acculturation: applications to nutrition research and dietetics. J Am Diet Assoc 2002; 102: 1105–1118.

    Article  Google Scholar 

  30. 30

    Murphy SP, White K, Park SY, Sharma S . Multivitamin-multimineral supplements' effect on total nutrient intake. Am J Clin Nutr 2007; 85: S280–S284.

    Google Scholar 

  31. 31

    Sharma S, Vik S, Pakseresht M, Shen L, Kolonel LN . Diet impacts mortality from cancer: results from the multiethnic cohort study. Cancer Cause Control 2013; 24: 685–693.

    Article  Google Scholar 

  32. 32

    Watters JL, Satia JA, Kupper LL, Swenberg JA, Schroeder JC, Switzer BR . Associations of antioxidant nutrients and oxidative DNA damage in healthy African-American and white adults. Cancer Epidemiol Biomarkers Prev 2007; 16: 1428–1436.

    CAS  Article  Google Scholar 

  33. 33

    Dixon LB, Sundquist J, Winkleby M . Differences in energy, nutrient, and food intakes in a US sample of Mexican-American women and men: findings from the third national health and nutrition examination survey, 1988-1994. Am J Epidemiol 2000; 152: 548–557.

    CAS  Article  Google Scholar 

  34. 34

    U.S. Department of Agriculture. Agricultural Research Service. 1994-96 Continuing Survey of Food Intakes by Individuals. US Department of Agriculture: Riverdale, MD, USA, 2000.

  35. 35

    U.S Department of Agriculture. Dietary Guidelines for Americans 5th edn. Department of health and human services: U.S., 2000.

  36. 36

    Marks GC, Hughes MC, van der Pols JC . Relative validity of food intake estimates using a food frequency questionnaire is associated with sex, age, and other personal characteristics. J Nutr 2006; 136: 459–465.

    CAS  Article  Google Scholar 

  37. 37

    Carithers TC, Talegawkar SA, Rowser ML, Henry OR, Dubbert PM, Bogle ML et al. Validity and calibration of food frequency questionnaires used with African-American adults in the Jackson heart study. J Am Diet Assoc 2009; 109: 1184–1193.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank Thomas Brown for his assistance with data analysis. We also thank Jennifer Ruehl for assisting with the writing of the manuscript. Finally we are grateful to Eva Erber, Dr Mohammadreza Pakseresht and Dr Sara Schaefer for reviewing and editing the manuscript. This research was funded by the National Cancer Institute (grant number R37 CA54821), The United States Department of Agriculture (USDA-NRI New investigator award, grant number 2002–00793) and the American Heart Association of Hawaii (beginning grant-in-aid, grant number 0265287Z).

Author information

Affiliations

Authors

Corresponding author

Correspondence to S Sharma.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sharma, S., Sheehy, T. & Kolonel, L. Sources of vegetables, fruits and vitamins A, C and E among five ethnic groups: Results from a multiethnic cohort study. Eur J Clin Nutr 68, 384–391 (2014). https://doi.org/10.1038/ejcn.2013.271

Download citation

Keywords

  • dietary sources
  • vitamin A
  • vitamin C
  • vitamin E
  • ethnicity

Further reading

Search

Quick links