Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Carbohydrates, glycemic index and diabetes mellitus

Bifidogenic effect of whole-grain wheat during a 12-week energy-restricted dietary intervention in postmenopausal women

Abstract

Background/Objectives:

Consumption of whole-grain products is known to have beneficial effects on human health. The effects of whole-grain products on the intestinal microbiota and intestinal integrity have, however, only been studied limitedly. We investigate changes of the human gut microbiota composition after consumption of whole-grain (WW) or refined wheat (RW) and further study effects on gut wall integrity.

Subjects/Methods:

Quantitative PCR was used to determine changes in the gut bacterial composition in postmenopausal women following a 12-week energy-restricted dietary intervention with WW (N=38) or RW (N=34). Intestinal integrity was determined by measuring trans-epithelial resistance (TER) across a Caco-2 cell monolayer, following exposure to faecal water.

Results:

No significant differences in microbiota composition were observed between the two dietary groups; however, the whole-grain intervention increased the relative abundance of Bifidobacterium compared to baseline, supporting a prebiotic effect of whole-grain wheat. Faecal water increased TER independent of dietary intervention, indicating that commensal bacteria produce metabolites that generally provide a positive effect on intestinal integrity. Combining microbiota composition data from the run-in period with its effect on TER revealed a tendency for a negative correlation between the relative abundance of Bifidobacterium and TER (P=0.09). This contradicts previous findings but supports observations of increased Salmonella infection in animal models following treatment with bifidogenic prebiotics.

Conclusions:

The present study shows that whole-grain wheat consumption increases the abundance of bifidobacteria compared to baseline and may have indirect effects on the integrity of the intestinal wall.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Jonnalagadda SS, Harnack L, Liu RH, McKeown N, Seal C, Liu S et al. Putting the whole grain puzzle together: health benefits associated with whole grains - summary of American Society for Nutrition 2010 Satellite Symposium. J Nutr 2011; 141: 1011S–1022S.

    Article  CAS  Google Scholar 

  2. Okarter N, Liu RH . Health benefits of whole grain phytochemicals. Crit Rev Food Sci Nutr 2010; 50: 193–208.

    Article  CAS  Google Scholar 

  3. Gibson GR, Roberfroid MB . Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 1995; 125: 1401–1412.

    Article  CAS  Google Scholar 

  4. Ewaschuk JB, Diaz H, Meddings L, Diederichs B, Dmytrash A, Backer J et al. Secreted bioactive factors from Bifidobacterium infantis enhance epithelial cell barrier function. Am J Physiol Gastrointest Liver Physiol 2008; 295: G1025–G1034.

    Article  CAS  Google Scholar 

  5. Costabile A, Klinder A, Fava F, Napolitano A, Fogliano V, Leonard C et al. Whole-grain wheat breakfast cereal has a prebiotic effect on the human gut microbiota: a double-blind, placebo-controlled, crossover study. Br J Nutr 2008; 99: 110–120.

    Article  CAS  Google Scholar 

  6. Carvalho-Wells AL, Helmolz K, Nodet C, Molzer C, Leonard C, McKevith B et al. Determination of the in vivo prebiotic potential of a maize-based whole grain breakfast cereal: a human feeding study. Br J Nutr 2010; 104: 1353–1356.

    Article  CAS  Google Scholar 

  7. Lappi J, Salojarvi J, Kolehmainen M, Mykkanen H, Poutanen K, de Vos WM et al. Intake of whole-grain and fiber-rich rye bread versus refined wheat bread does not differentiate intestinal microbiota composition in Finnish adults with metabolic syndrome. J Nutr 2013; 143: 648–655.

    Article  CAS  Google Scholar 

  8. Ross AB, Bruce SJ, Blondel-Lubrano A, Oguey-Araymon S, Beaumont M, Bourgeois A et al. A whole-grain cereal-rich diet increases plasma betaine, and tends to decrease total and LDL-cholesterol compared with a refined-grain diet in healthy subjects. Br J Nutr 2011; 105: 1492–1502.

    Article  CAS  Google Scholar 

  9. Connolly ML, Lovegrove JA, Tuohy KM . In vitro evaluation of the microbiota modulation abilities of different sized whole oat grain flakes. Anaerobe 2010; 16: 483–488.

    Article  Google Scholar 

  10. Connolly ML, Tuohy KM, Lovegrove JA . Wholegrain oat-based cereals have prebiotic potential and low glycaemic index. Br J Nutr 2012; 108: 2198–2206.

    Article  CAS  Google Scholar 

  11. Connolly ML, Lovegrove JA, Tuohy KM . In vitro fermentation characteristics of whole grain wheat flakes and the effect of toasting on prebiotic potential. J Med Food 2012; 15: 33–43.

    Article  CAS  Google Scholar 

  12. Maccaferri S, Klinder A, Cacciatore S, Chitarrari R, Honda H, Luchinat C et al. In vitro fermentation of potential prebiotic flours from natural sources: Impact on the human colonic microbiota and metabolome. Mol Nutr Food Res 2012; 56: 1342–1352.

    Article  CAS  Google Scholar 

  13. Marcobal A, Kashyap PC, Nelson TA, Aronov PA, Donia MS, Spormann A et al. A metabolomic view of how the human gut microbiota impacts the host metabolome using humanized and gnotobiotic mice. ISME J 2013; 7: 1933–1943.

    Article  CAS  Google Scholar 

  14. Shen L, Weber CR, Raleigh DR, Yu D, Turner JR . Tight junction pore and leak pathways: a dynamic duo. Annu Rev Physiol 2011; 73: 283–309.

    Article  CAS  Google Scholar 

  15. Bovee-Oudenhoven IM, Ten Bruggencate SJ, Lettink-Wissink ML, van der Meer R . Dietary fructo-oligosaccharides and lactulose inhibit intestinal colonisation but stimulate translocation of salmonella in rats. Gut 2003; 52: 1572–1578.

    Article  CAS  Google Scholar 

  16. Petersen A, Bergström A, Andersen JB, Hansen M, Lahtinen SJ, Wilcks A et al. Analysis of the intestinal microbiota of oligosaccharide fed mice exhibiting reduced resistance to Salmonella infection. Benef Microbes 2010; 1: 271–281.

    Article  CAS  Google Scholar 

  17. Ten Bruggencate SJ, Bovee-Oudenhoven IM, Lettink-Wissink ML, van der Meer R . Dietary fructo-oligosaccharides dose-dependently increase translocation of salmonella in rats. J Nutr 2003; 133: 2313–2318.

    Article  CAS  Google Scholar 

  18. Ten Bruggencate SJ, Bovee-Oudenhoven IM, Lettink-Wissink ML, van der Meer R . Dietary fructooligosaccharides increase intestinal permeability in rats. J Nutr 2005; 135: 837–842.

    Article  CAS  Google Scholar 

  19. Raschka L, Daniel H . Mechanisms underlying the effects of inulin-type fructans on calcium absorption in the large intestine of rats. Bone 2005; 37: 728–735.

    Article  CAS  Google Scholar 

  20. Kristensen M, Toubro S, Jensen MG, Ross AB, Riboldi G, Petronio M et al. Whole grain compared with refined wheat decreases the percentage of body fat following a 12-week, energy-restricted dietary intervention in postmenopausal women. J Nutr 2012; 142: 710–716.

    Article  CAS  Google Scholar 

  21. Bergström A, Licht TR, Wilcks A, Andersen JB, Schmidt LR, Gronlund HA et al. Introducing GUt low-density array (GULDA): a validated approach for qPCR-based intestinal microbial community analysis. FEMS Microbiol Lett 2012; 337: 38–47.

    Article  Google Scholar 

  22. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL . Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 2012; 13: 134.

    Article  CAS  Google Scholar 

  23. Ramakers C, Ruijter JM, Deprez RH, Moorman AF . Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 2003; 339: 62–66.

    Article  CAS  Google Scholar 

  24. Ruijter JM, Ramakers C, Hoogaars WM, Karlen Y, Bakker O, van den Hoff MJ et al. Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res 2009; 37: e45.

    Article  CAS  Google Scholar 

  25. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI . Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 2005; 102: 11070–11075.

    Article  CAS  Google Scholar 

  26. Ley RE, Turnbaugh PJ, Klein S, Gordon JI . Microbial ecology: human gut microbes associated with obesity. Nature 2006; 444: 1022–1023.

    Article  CAS  Google Scholar 

  27. Ouwehand AC, Bergsma N, Parhiala R, Lahtinen S, Gueimonde M, Finne-Soveri H et al. Bifidobacterium microbiota and parameters of immune function in elderly subjects. FEMS Immunol Med Microbiol 2008; 53: 18–25.

    Article  CAS  Google Scholar 

  28. Junick J, Blaut M . Quantification of human fecal Bifidobacterium species by use of quantitative real-time PCR analysis targeting the groEL gene. Appl Environ Microbiol 2012; 78: 2613–2622.

    Article  CAS  Google Scholar 

  29. Gill CI, Heavey P, McConville E, Bradbury I, Fassler C, Mueller S et al. Effect of fecal water on an in vitro model of colonic mucosal barrier function. Nutr Cancer 2007; 57: 59–65.

    Article  Google Scholar 

  30. Commane DM, Shortt CT, Silvi S, Cresci A, Hughes RM, Rowland IR . Effects of fermentation products of pro- and prebiotics on trans-epithelial electrical resistance in an in vitro model of the colon. Nutr Cancer 2005; 51: 102–109.

    Article  CAS  Google Scholar 

  31. Lopez P, Gonzalez-Rodriguez I, Sanchez B, Ruas-Madiedo P, Suarez A, Margolles A et al. Interaction of Bifidobacterium bifidum LMG13195 with HT29 cells influences regulatory-T-cell-associated chemokine receptor expression. Appl Environ Microbiol 2012; 78: 2850–2857.

    Article  CAS  Google Scholar 

  32. Cani PD, Possemiers S, Van de WT, Guiot Y, Everard A, Rottier O et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 2009; 58: 1091–1103.

    Article  CAS  Google Scholar 

  33. Petersen A, Heegaard PM, Pedersen AL, Andersen JB, Sørensen RB, Frokiaer H et al. Some putative prebiotics increase the severity of Salmonella enterica serovar Typhimurium infection in mice. BMC Microbiol 2009; 9: 245.

    Article  Google Scholar 

  34. Ten Bruggencate SJ, Bovee-Oudenhoven IM, Lettink-Wissink ML, Katan MB, van der Meer R . Dietary fructo-oligosaccharides and inulin decrease resistance of rats to salmonella: protective role of calcium. Gut 2004; 53: 530–535.

    Article  CAS  Google Scholar 

  35. Ten Bruggencate SJ, Bovee-Oudenhoven IM, Lettink-Wissink ML, Katan MB, van der Meer R . Dietary fructooligosaccharides affect intestinal barrier function in healthy men. J Nutr 2006; 136: 70–74.

    Article  CAS  Google Scholar 

  36. Walter J, Tannock GW, Tilsala-Timisjarvi A, Rodtong S, Loach DM, Munro K et al. Detection and identification of gastrointestinal Lactobacillus species by using denaturing gradient gel electrophoresis and species-specific PCR primers. Appl Environ Microbiol 2000; 66: 297–303.

    Article  CAS  Google Scholar 

  37. Guo X, Xia X, Tang R, Zhou J, Zhao H, Wang K . Development of a real-time PCR method for Firmicutes and Bacteroidetes in faeces and its application to quantify intestinal population of obese and lean pigs. Lett Appl Microbiol 2008; 47: 367–373.

    Article  CAS  Google Scholar 

  38. Walter J, Hertel C, Tannock GW, Lis CM, Munro K, Hammes WP . Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Appl Environ Microbiol 2001; 67: 2578–2585.

    Article  CAS  Google Scholar 

  39. Heilig HG, Zoetendal EG, Vaughan EE, Marteau P, Akkermans AD, de Vos WM . Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Appl Environ Microbiol 2002; 68: 114–123.

    Article  CAS  Google Scholar 

  40. Bartosch S, Fite A, Macfarlane GT, McMurdo ME . Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl Environ Microbiol 2004; 70: 3575–3581.

    Article  CAS  Google Scholar 

  41. Delroisse JM, Boulvin AL, Parmentier I, Dauphin RD, Vandenbol M, Portetelle D . Quantification of Bifidobacterium spp. and Lactobacillus spp. in rat fecal samples by real-time PCR. Microbiol Res 2008; 163: 663–670.

    Article  CAS  Google Scholar 

  42. Matsuki T, Watanabe K, Tanaka R, Oyaizu H . Rapid identification of human intestinal bifidobacteria by 16S rRNA-targeted species- and group-specific primers. FEMS Microbiol Lett 1998; 167: 113–121.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The project was funded by the European Commission in the Communities 6th Framework Programme, Project HEALTHGRAIN (FOOD-CT-2005-514008) and by the Gut, Grain & Greens Research Centre, supported by the Danish Strategic Research Council (11-116163). We thank Bodil Madsen and Kate Vina Vibefeldt for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M I Bahl.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on European Journal of Clinical Nutrition website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christensen, E., Licht, T., Kristensen, M. et al. Bifidogenic effect of whole-grain wheat during a 12-week energy-restricted dietary intervention in postmenopausal women. Eur J Clin Nutr 67, 1316–1321 (2013). https://doi.org/10.1038/ejcn.2013.207

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ejcn.2013.207

Keywords

This article is cited by

Search

Quick links