Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Carbohydrates, glycemic index and diabetes mellitus

Higher insulin sensitivity in vegans is not associated with higher mitochondrial density

Abstract

BACKGROUND/OBJECTIVES:

Vegans have a lower incidence of insulin resistance (IR)-associated diseases and a higher insulin sensitivity (IS) compared with omnivores. The aim of this study was to examine whether the higher IS in vegans relates to markers of mitochondrial biogenesis and to intramyocellular lipid (IMCL) content.

SUBJECTS/METHODS:

Eleven vegans and 10 matched (race, age, sex, body mass index, physical activity and energy intake) omnivorous controls were enrolled in a case–control study. Anthropometry, bioimpedance (BIA), ultrasound measurement of visceral and subcutaneous fat layer, parameters of glucose and lipid homeostasis, hyperinsulinemic euglycemic clamp and muscle biopsies were performed. Citrate synthase (CS) activity, mitochondrial DNA (mtDNA) and IMCL content were assessed in skeletal muscle samples.

RESULTS:

Both groups were comparable in anthropometric and BIA parameters, physical activity and protein–energy intake. Vegans had significantly higher glucose disposal (M-value, vegans 8.11±1.51 vs controls 6.31±1.57 mg/kg/min, 95% confidence interval: 0.402 to 3.212, P=0.014), slightly lower IMCL content (vegans 13.91 (7.8 to 44.0) vs controls 17.36 (12.4 to 78.5) mg/g of muscle, 95% confidence interval: −7.594 to 24.550, P=0.193) and slightly higher relative muscle mtDNA amount (vegans 1.36±0.31 vs controls 1.13±0.36, 95% confidence interval:−0.078 to 0.537, P=0.135). No significant differences were found in CS activity (vegans 18.43±5.05 vs controls 18.16±5.41 μmol/g/min, 95% confidence interval: −4.503 to 5.050, P=0.906).

Conclusions:

Vegans have a higher IS, but comparable mitochondrial density and IMCL content with omnivores. This suggests that a decrease in whole-body glucose disposal may precede muscle lipid accumulation and mitochondrial dysfunction in IR development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Hua NW, Stoohs RA, Facchini FS . Low iron status and enhanced insulin sensitivity in lacto-ovo vegetarians. Br J Nutr 2001; 86: 515–519.

    Article  CAS  PubMed  Google Scholar 

  2. Goff LM, Bell JD, So PW, Dornhorst A, Frost GS . Veganism and its relationship with insulin resistance and intramyocellular lipid. Eur J Clin Nutr 2005; 59: 291–298.

    Article  CAS  PubMed  Google Scholar 

  3. Yang SY, Li XJ, Zhang W, Liu CQ, Zhang HJ, Lin JR et al. Chinese lacto-vegetarian diet exerts favourable effects on metabolic parameters, intima-media thickness, and cardiovascular risks in healthy men. Nutr Clin Pract 2012; 27: 392–398.

    Article  PubMed  Google Scholar 

  4. Aune D, Ursin G, Veierød MB . Meat consumption and the risk of type 2 diabetes: a systematic review and meta-analysis of cohort studies. Diabetologia 2009; 52: 2277–2287.

    Article  CAS  PubMed  Google Scholar 

  5. Tonstad S, Stewart K, Oda K, Batech M, Herring RP, Fraser GE . Vegetarian diets and incidence of diabetes in the Adventist Health Study-2. Nutr Metab Cardiovasc Dis 2013; 23: 292–299.

    Article  CAS  PubMed  Google Scholar 

  6. Barnard ND, Cohen J, Jenkins DJA, Turner-McGrievy G, Gloede L, Green A et al. A low-fat vegan diet and a conventional diabetes diet in the treatment of type 2 diabetes: a randomized, controlled, 74-wk clinical trial. Am J Clin Nutr 2009; 89: 1588S–1596S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kahleova H, Matoulek M, Malinska H, Oliyarnik O, Kazdova L, Neskudla T et al. Vegetarian diet improves insulin resistance and oxidative stress markers more than conventional diet in subjects with Type 2 diabetes. Diabet Med 2011; 28: 549–559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brehm A, Roden M . Glucose clamp techniques. In: Roden M ed Clinical Diabetes Research 1st edn 51, John Wiley and Sons, Ltd: Chichester, 2007.

    Google Scholar 

  9. Krssak M, Falk Petersen K, Dresner A, DiPietro L, Vogel SM, Rothman DL et al. Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study. Diabetologia 1991; 42: 113–116.

    Article  Google Scholar 

  10. Lawrence JC, Gower BA, Garvey WT, Munoz AJ, Darnell BE, Oster RA et al. Relationship between insulin sensitivity and muscle lipids may differ with muscle group and ethnicity. Open Obes J 2010; 2: 137–144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Goodpaster BH, He J, Watkins S, Kelley DE . Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J Clin Endocrinol Metab 2001; 86: 5755–5761.

    Article  CAS  PubMed  Google Scholar 

  12. Boushel R, Gnaiger E, Schjerling P, Skovbro M, Kraunsøe R, Dela F . Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle. Diabetologia 2007; 50: 790–796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ritov VB, Menshikova EV, Azuma K, Wood R, Toledo FGS, Goodpaster BH et al. Deficiency of electron transport chain in human skeletal muscle mitochondria in type 2 diabetes mellitus and obesity. Am J Physiol Endocrinol Metab 2010; 298: E49–E58.

    Article  CAS  PubMed  Google Scholar 

  14. Kelley DE, He J, Menshikova EV, Ritov VB . Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 2002; 51: 2944–2950.

    Article  CAS  PubMed  Google Scholar 

  15. Han DH, Hancock CR, Jung SR, Higashida K, Kim SH, Holloszy JO . Deficiency of the mitochondrial electron transport chain in muscle does not cause insulin resistance. PLoS One 2011; 6: 19739.

    Article  Google Scholar 

  16. Dela F, Helge JW . Insulin resistance and mitochondrial function in skeletal muscle. Int J Biochem Cell Biol 2013; 45: 11–15.

    Article  CAS  PubMed  Google Scholar 

  17. Lee RC, Wang Z, Heo M, Ross R, Janssen I, Heymsfield SB . Total-body skeletal muscle mass: development and cross-validation of anthropometric prediction models. Am J Clin Nutr 2000; 72: 796–803.

    Article  CAS  PubMed  Google Scholar 

  18. Baecke JA, Burema J, Frijters JE . A short questionnaire for the measurement of habitual physical activity in epidemiological studies. Am J Clin Nutr 1982; 36: 936–942.

    Article  CAS  PubMed  Google Scholar 

  19. Florindo AA, Latorre MRDO, Santos ECM, Negreo CE, Azevedo LF, Segurado AAC . Validity and reliability of the Baecke questionnaire for the evaluation of habitual physical activity among people living with HIV/AIDS. Cad Saude Publica 2006; 22: 535–541.

    Article  PubMed  Google Scholar 

  20. Husek P, Šimek P, Tvrzická E . Simple and rapid procedure for the determination of individual free fatty acids in serum. Anal Chim Acta 2002; 465: 433–439.

    Article  CAS  Google Scholar 

  21. DeFronzo RA, Tobin JD, Andres R . Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol 1979; 237: E214–E223.

    CAS  PubMed  Google Scholar 

  22. Bergstrom J . Percutaneous needle biopsy of skeletal muscle in physiological and clinical research. Scand J Clin Lab Invest 1975; 35: 609–616.

    Article  CAS  PubMed  Google Scholar 

  23. Lepage G, Roy CC . Direct transesterification of all classes of lipids in a one-step reaction.'. J Lipid Res 1986; 27: 114–120.

    CAS  PubMed  Google Scholar 

  24. Rodríguez-Palmero M, Lopez-Sabater MC, Castellote-Bargallo AI, De la Torre-Boronat MC, Rivero-Urgell M . Comparison of two methods for the determination of fatty acid profiles in plasma and erythrocytes. J Chromatogr A 1982; 793: 435–440.

    Google Scholar 

  25. Kim MK, Cho SW, Park YK . Long-term vegetarians have low oxidative stress, body fat, and cholesterol levels. Nutr Res Pract 2012; 6: 155–161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rosell MS, Lloyd-Wright Z, Appleby PN, Sanders TAB, Allen NE, Key TJ . Long-chain n-3 polyunsaturated fatty acids in plasma in British meat-eating, vegetarian, and vegan men. Am J Clin Nutr 2005; 82: 327–334.

    Article  CAS  PubMed  Google Scholar 

  27. He J, Watkins S, Kelley DE . Skeletal muscle lipid content and oxidative enzyme activity in relation to muscle fiber type in type 2 diabetes and obesity. Diabetes 2001; 50: 817–823.

    Article  CAS  PubMed  Google Scholar 

  28. Wang H, Hiatt WR, Barstow TJ, Brass EP . Relationships between muscle mitochondrial DNA content, mitochondrial enzyme activity and oxidative capacity in man: alterations with disease. Eur J Appl Physiol Occup Physiol 1999; 80: 22–27.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded within the scientific framework of research programs of the Charles University in Prague, PRVOUK-P31 and UNCE 204015, and was supported by a Grant of the Ministry of Health of the Czech Republic, number NT/14416.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Gojda.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gojda, J., Patková, J., Jaček, M. et al. Higher insulin sensitivity in vegans is not associated with higher mitochondrial density. Eur J Clin Nutr 67, 1310–1315 (2013). https://doi.org/10.1038/ejcn.2013.202

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ejcn.2013.202

Keywords

This article is cited by

Search

Quick links