Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Carbohydrates, glycemic index and diabetes mellitus

Intravenous acetate elicits a greater free fatty acid rebound in normal than hyperinsulinaemic humans

Abstract

Background/objectives:

Colonic fermentation of dietary fiber may improve insulin sensitivity by the metabolic effects of short chain fatty acids (SCFA) in reducing free fatty acids (FFA). The main objectives of this study were to compare peripheral uptake of acetate (AC) in participants with normal (<40 pmol/l, NI) and high (40 pmol/l, HI) plasma insulin, and the ability of AC to reduce FFA in both the groups.

Subjects/methods:

Overnight fasted NI (n=9) and HI (n=9) participants were given an intravenous (IV) infusion of 140 mmol/l sodium acetate at three different rates over 90 min. The total amount of AC infused was 51.85 mmols.

Results:

AC clearance in NI participants was not significantly different than that in HI participants (2.11±0.23 vs 2.09±0.24 ml/min). FFA fell in both the groups, but rebounded to a greater extent in NI than HI participants (time × group interaction, P=0.001). Significant correlations between insulin resistance (IR) indices (homeostasis model assessment of insulin resistance (HOMA-IR), Matsuda and insulinogenic index) vs FFA rebound during IV AC infusion were also observed.

Conclusions:

These findings suggest that AC uptake is similar in both the groups. Participants with lower plasma insulin and lower IR indices had a greater FFA rebound. These results support the hypothesis that increasing AC concentrations in the systemic circulation may reduce lipolysis and plasma FFA concentrations and thus improve insulin sensitivity. More in-depth studies are needed to look at the effects of SCFA on FFA metabolism in insulin-resistant participants.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. van de Vijver LPL, van den Bosch LMC, van den Brandt PA, Goldbohm RA . Whole-grain consumption, dietary fibre intake and body mass index in the Netherlands cohort study. Eur J Clin Nutr 2009; 63: 31–38.

    Article  CAS  Google Scholar 

  2. Lutsey PL, Jacobs DR, Kori S, Mayer-Davis E, Shea S, Steffen LM et al. Whole grain intake and its cross-sectional association with obesity, insulin resistance, inflammation, diabetes and subclinical CVD: the MESA Study. Br J Nutr 2007; 98: 397–405.

    Article  CAS  Google Scholar 

  3. Newby P, Maras J, Bakun P, Muller D, Ferruci L, Tucker KL . Intake of whole grains, refined grains, and cereal fiber measured with 7-d diet records and associations with risk factors for chronic disease. Am J Clin Nutr 2007; 86: 1745–1753.

    Article  CAS  Google Scholar 

  4. McKeown NM, Meigs JB, Liu S, Wilson PW, Jacques PF . Whole-grain intake is favorably associated with metabolic risk factors for type 2 diabetes and cardiovascular disease in the Framingham Offspring Study. Am J Clin Nutr 2002; 76: 390–398.

    Article  CAS  Google Scholar 

  5. Cummings JH . Short chain fatty acids in the human colon. Gut 1981; 22: 763–779.

    Article  CAS  Google Scholar 

  6. Macfarlane GT, Gibson GR . Microbiological aspects of the production of short-chain fatty acids in the large bowel. In: Cummings JH, Rombeau JL, Sakata T, (eds) Physiological and Clinical Aspects of Short-Chain Fatty Acids. Cambridge University Press: Cambridge, UK, 1995 pp 87–105.

    Google Scholar 

  7. Scheppach W, Pomare WE, Elia M, Cummings JH . The contribution of the large intestine to blood acetate in man. Clin Sci 1991; 80: 177–182.

    Article  CAS  Google Scholar 

  8. Akanji AO, Humphreys S, Thursfield V, Hockaday TD . The relationship of plasma acetate with glucose and other blood intermediary metabolites in non-diabetic and diabetic participants. Clin Chim Acta 1989; 185: 25–34.

    Article  CAS  Google Scholar 

  9. Brindle PA, Schooley DA, Tsai LW, Baker FC . Comparitive metabolism of branched-chain aminoacids to precursors of juvenile hormone biogenesis in corpora allata of lepidopterous versus nonlepidopterous insects. J Biol Chem 1988; 263: 10653–10657.

    CAS  PubMed  Google Scholar 

  10. Walter JH, Thompson GN, Leonard JV, Hetherington CS, Bartlett K . Measurement of propionate turnover in vivo using sodium (2H5) propionate and sodium (13C) propionate. Clin Chim Acta 1989; 182: 141–150.

    Article  CAS  Google Scholar 

  11. Cummings JH, Pomare EW, Branch WJ, Naylor CPE, Macfarlane GT . Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 1987; 28: 1221–1227.

    Article  CAS  Google Scholar 

  12. Robertson MD . Metabolic cross talk between the colon and the periphery: implications for insulin sensitivity. Proc Nutr Soc 2007; 66: 351–361.

    Article  CAS  Google Scholar 

  13. Wolever TMS, Josse RG, Leiter LA, Chiasson JL . Time of day and glucose tolerance status affect serum short-chain fatty acid concentrations in humans. Metabolism 1997; 46: 805–811.

    Article  CAS  Google Scholar 

  14. Fernandes J, Vogt J, Wolever TMS . Inulin increases short-term markers for colonic fermentation similarly in healthy and hyperinsulinaemic humans. Eu J Clin Nutr 2011; 65: 1279–1286.

    Article  CAS  Google Scholar 

  15. Boden G . Obesity, insulin resistance and free fatty acids. Curr Opin Endocrinol Diabetes Obes 2011; 18: 139–143.

    Article  CAS  Google Scholar 

  16. Crouse JR, Gerson CD, DeCarli LM, Lieber CS . Role of acetate in the reduction of plasma free fatty acids produced by ethanol in man. J Lipid Res 1968; 9: 509–512.

    CAS  PubMed  Google Scholar 

  17. Wolever TMS, Spadafora P, Eshuis H . Interaction between colonic acetate and propionate in humans. Am J Clin Nutr 1991; 53: 681–687.

    Article  CAS  Google Scholar 

  18. Jenkins DJA, Wolever TMS, Jenkins A, Brighenti F, Vuksan V, Rao AV et al. Specific types of colonic fermentation may raise low-density-lipoprotein-cholesterol concentrations. Am J Clin Nutr 1991; 54: 141–147.

    Article  CAS  Google Scholar 

  19. Ferchaud-Roucher V, Pouteau E, Piloquet H, Zaïr Y, Krempf M . Colonic fermentation from lactulose inhibits lipolysis in overweight participants. Am J Physiol Endocrinol Metab 2005; 289: E716–E720.

    Article  CAS  Google Scholar 

  20. Brighenti F, Benini L, Del Rio D, Casiraghi C, Pellegrini N, Scazzina F et al. Colonic fermentation of indigestible carbohydrates contributes to the second-meal effect. Am J Clin Nutr 2006; 83: 817–822.

    Article  CAS  Google Scholar 

  21. Tarini J, Wolever TMS . The fermentable fibre inulin increases postprandial serum short-chain fatty acids and reduces free-fatty acids and ghrelin in healthy participants. Appl Physiol Nutr Metab 2010; 35: 9–16.

    Article  CAS  Google Scholar 

  22. Yeni-Komshian H, Carantoni M, Abbasi F, Reaven GM . Relationship between several surrogate estimates of insulin resistance and quantification of insulin-mediated glucose disposal in 490 healthy nondiabetic volunteers. Diabetes Care 2000; 23: 171–175.

    Article  CAS  Google Scholar 

  23. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC . Homeostasis model assessment: insulin resistance and B cell function from fasting plasma glucose and insulin concentration in man. Diabetologia 1985; 28: 412–419.

    Article  CAS  Google Scholar 

  24. Matsuda M, DeFronzo RA . Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 1999; 22: 1462–1470.

    Article  CAS  Google Scholar 

  25. Mittendorfer B, Sidossis S, Walser E, Chinkes DL, Wolfe RR . Regional acetate kinetics and oxidation in human volunteers. Am J Physiol 1998; 274: E978–E983.

    CAS  PubMed  Google Scholar 

  26. Pouteau E, Piloquet H, Maugeais P, Champ M, Dumon H, Nguyen P et al. Kinetic aspects of acetate metabolism in healthy humans using (1-13C) acetate. Am J Physiol 1996; 271: E58–E64.

    CAS  PubMed  Google Scholar 

  27. Akanji AO, Hockaday TDR . Acetate tolerance and the kinetics of acetate utilization in diabetic and nondiabetic participants. Am J Clin Nutr 1990; 51: 112–118.

    Article  CAS  Google Scholar 

  28. Seufert CD, Graf M, Janson G, Kuhn A, Söling HD . Formation of free acetate by isolated perfused livers from normal, starved and diabetic rats. Biochem Biophys Res Commun 1974; 57: 901–909.

    Article  CAS  Google Scholar 

  29. Buckley BM, Williamson DH . Origin of blood acetate in the rat. Biochem J 1977; 166: 539–545.

    Article  CAS  Google Scholar 

  30. Smith RF, Humphreys S, Hockaday TDR . The measurement of plasma acetate by a manual or automated technique in diabetic and non-diabetic participants. Ann Clin Biochem 1986; 23: 285–291.

    Article  CAS  Google Scholar 

  31. Eckel RH, Grundy SM, Zimmet PZ . The metabolic syndrome. Lancet 2005; 365: 1415–1428.

    Article  CAS  Google Scholar 

  32. Wolfe BM, Havel JR, Marliss EB, Kane JP, Seymour J, Ahuja SP . Effects of a 3-day fast and of ethanol on splanchnic metabolism of FFA, amino acids, and carbohydrates in healthy young men. J Clin Invest 1976; 57: 329–340.

    Article  CAS  Google Scholar 

  33. Jones DP, Perman ES, Lieber CS . Free fatty acid turnover and triglyceride metabolism after ethanol ingestion in man. J Lab Clin Med 1965; 66: 804–813.

    CAS  PubMed  Google Scholar 

  34. Siler SC, Neese RA, Hellerstein MK . De novo lipogenesis, lipid kinetics, and whole-body lipid balances in humans after acute alcohol consumption. Am J Clin Nutr 1999; 70: 928–936.

    Article  CAS  Google Scholar 

  35. Yki-Järvinen H, Koivisto VA, Ylikahri R, Taskinen MR . Acute effects of ethanol and acetate on glucose kinetics in normal participants. Am J Physiol 1988; 254: E175–E180.

    Article  Google Scholar 

  36. Abramson EA, Arky RA . Acute antilipolytic effects of ethyl alcohol and acetate in man. J Lab Clin Med 1968; 72: 105–117.

    CAS  PubMed  Google Scholar 

  37. Nilsson NO, Belfrage P . Effects of acetate, acetaldehyde, and ethanol on lipolysis in isolated rat adipocytes. J Lipid Res 1978; 19: 737–741.

    CAS  PubMed  Google Scholar 

  38. Kelley DE, Mandarino LJ . Fuel selection in human skeletal system in insulin resistance: a reexamination. Diabetes 2000; 49: 677–683.

    Article  CAS  Google Scholar 

  39. Turpeinen AK, Takala TO, Nuutila P, Axelin T, Luotolahti M, Haaparanta M et al. Impaired free fatty acid uptake in skeletal muscle but not in myocardium in patients with impaired glucose tolerance: studies with pet and 14(r,s)-(18f)fluoro-6-thia-heptadecanoic acid. Diabetes 1999; 48: 1245–1250.

    Article  CAS  Google Scholar 

  40. Kelley DE, Goodpaster B, Wing RR, Simoneau JA . Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am J Physiol 1999; 277: E1130–E1141.

    Article  CAS  Google Scholar 

  41. Flourié B, Leblond A, Flourent C, Rautureau M, Bisalli A, Rambaud J-C . Starch malabsorption and breath gas excretion in healthy subjects consuming low- and high-starch diets. Gastroenterology 1988; 95: 356–363.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant No. OOP-64648 from the Canadian Institutes for Health Research (CIHR), Institute of Nutrition, Metabolism and Diabetes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T M S Wolever.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandes, J., Vogt, J. & Wolever, T. Intravenous acetate elicits a greater free fatty acid rebound in normal than hyperinsulinaemic humans. Eur J Clin Nutr 66, 1029–1034 (2012). https://doi.org/10.1038/ejcn.2012.98

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ejcn.2012.98

Keywords

This article is cited by

Search

Quick links