Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Aluminium in parenteral nutrition: a systematic review

Abstract

Aluminium (Al) toxicity problem in parenteral nutrition solutions (PNS) is decades old and is still unresolved. The aim of this review is to gather updated information about this matter, regarding legislation, manifestations, diagnostics and treatment, patient population at risk and the actions to be taken to limit its accumulation. A structured search using MeSH vocabulary and Title/Abstract searches was conducted in PubMed (http://www.pubmed.gov) up to November 2012. Al is ubiquitous, facilitating its potential for exposure. Nevertheless, humans have several mechanisms to prevent significant absorption and to aid its elimination; therefore, the vast majority of the population is not at risk for Al toxicity. However, when protective gastrointestinal mechanisms are bypassed (for example, parenteral fluids), renal function is impaired (for example, adult patients with renal compromise and neonates) or exposure is high (for example, long-term PNS), Al is prone to accumulate in the body, including manifestations such as impaired neurological development, Alzheimer’s disease, metabolic bone disease, dyslipemia and even genotoxic activity. A high Al content in PNS is largely the result of three parenteral nutrient additives: calcium gluconate, inorganic phosphates and cysteine hydrochloride. Despite the legislative efforts, some factors make difficult to comply with the rule and, therefore, to limit the Al toxicity. Unfortunately, manufacturers have not universally changed their processes to obtain a lower Al content of parenteral drug products (PDP). In addition, the imprecise information provided by PDP labels and the high lot-to-lot variation make the prediction of Al content rather inaccurate.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Gura KM . Aluminum contamination in products used in parenteral nutrition: has anything changed? Nutrition 2010; 26: 585–594.

    CAS  Article  Google Scholar 

  2. Poole RL, Hintz SR, Mackenzie NI, Kerner JA . Aluminum exposure from pediatric parenteral nutrition: meeting the new FDA regulation. JPEN J Parenter Enteral Nutr 2008; 32: 242–246.

    CAS  Article  Google Scholar 

  3. Canada TW . Aluminum exposure through parenteral nutrition formulations: mathematical versus clinical relevance. Am J Health Syst Pharm 2005; 62: 315–318.

    Article  Google Scholar 

  4. Sun M, Wu Q . Determination of ultra-trace aluminum in human albumin by cloud point extraction and graphite furnace atomic absorption spectrometry. J Hazard Mater 2010; 176: 901–905.

    CAS  Article  Google Scholar 

  5. Lukiw WJ . Evidence supporting a biological role for aluminum in chromatin compaction and epigenetics. J Inorg Biochem 2010; 104: 1010–1012.

    CAS  Article  Google Scholar 

  6. Lima PD, Vasconcellos MC, Montenegro RC, Bahia MO, Costa ET, Antunes LM et al. Genotoxic effects of aluminum, iron and manganese in human cells and experimental systems: a review of the literature. Hum Exp Toxicol 2011; 30: 1435–1444.

    CAS  Article  Google Scholar 

  7. Khan S, Kazi TG, Baig JA, Afridi HI, Kolachi NF . Separation/preconcentration methods for the determination of aluminum in dialysate solution and scalp hair samples of kidney failure patients. Biol Trace Elem Res 2011; 144: 205–216.

    CAS  Article  Google Scholar 

  8. Brown RO, Morgan LM, Bhattacharya SK, Johnson PL, Minard G, Dickerson RN . Potential aluminum exposure from parenteral nutrition in patients with acute kidney injury. Ann Pharmacother 2008; 42: 1410–1415.

    CAS  Article  Google Scholar 

  9. Charney PJ . A S.P.E.N. Statement on aluminum in parenteral nutrition solutions. Nutr Clin Pract 2004; 19: 416–417.

    Article  Google Scholar 

  10. Mirtallo JM . Aluminum contamination of parenteral nutrition fluids. JPEN J Parenter Enteral Nutr 2010; 34: 346–347.

    Article  Google Scholar 

  11. Tomljenovic L . Aluminum and Alzheimer’s disease: after a century of controversy, is there a plausible link? J Alzheimers Dis 2011; 23: 567–598.

    CAS  Article  Google Scholar 

  12. Poole RL, Schiff L, Hintz SR, Wong A, Mackenzie N, Kerner JA . Aluminum content of parenteral nutrition in neonates: measured versus calculated levels. J Pediatr Gastroenterol Nutr 2010; 50: 208–211.

    CAS  Article  Google Scholar 

  13. Gura KM, Puder M . Recent developments in aluminium contamination of products used in parenteral nutrition. Curr Opin Clin Nutr Metab Care 2006; 9: 239–246.

    CAS  Article  Google Scholar 

  14. Klein GL . Aluminum contamination of parenteral nutrition solutions and its impact on the pediatric patient. Nutr Clin Pract 2003; 18: 302–307.

    Article  Google Scholar 

  15. Fewtrell MS, Edmonds CJ, Isaacs E, Bishop NJ, Lucas A . Aluminium exposure from parenteral nutrition in preterm infants and later health outcomes during childhood and adolescence. Proc Nutr Soc 2011; 70: 299–304.

    CAS  Article  Google Scholar 

  16. Advenier E, Landry C, Colomb V, Cognon C, Pradeau D, Florent M et al. Aluminum contamination of parenteral nutrition and aluminum loading in children on long-term parenteral nutrition. J Pediatr Gastroenterol Nutr 2003; 36: 448–453.

    CAS  Article  Google Scholar 

  17. Migaki EA, Melhart BJ, Dewar CJ, Huston RK . Calcium chloride and sodium phosphate in neonatal parenteral nutrition containing TrophAmine: precipitation studies and aluminum content. JPEN J Parenter Enteral Nutr 2012; 36: 470–475.

    CAS  Article  Google Scholar 

  18. Pluhator-Murton MM, Fedorak RN, Audette RJ, Marriage BJ, Yatscoff RW, Gramlich LM . Trace element contamination of total parenteral nutrition. 2. Effect of storage duration and temperature. JPEN J Parenter Enteral Nutr 1999; 23: 228–232.

    CAS  Article  Google Scholar 

  19. Driscoll M, Driscoll DF . Calculating aluminum content in total parenteral nutrition admixtures. Am J Health Syst Pharm 2005; 62: 312–315.

    CAS  Article  Google Scholar 

  20. Koo WW, Kaplan LA, Horn J, Tsang RC, Steichen JJ . Aluminum in parenteral nutrition solution--sources and possible alternatives. JPEN J Parenter Enteral Nutr 1986; 10: 591–595.

    CAS  Article  Google Scholar 

  21. Acca M, Ragno A, Francucci CM, D’Erasmo E . Metabolic bone diseases during long-term total parenteral nutrition. J Endocrinol Invest 2007; 30 (6 Suppl), 54–59.

    CAS  PubMed  Google Scholar 

  22. Henry RS, Jurgens RW, Sturgeon R, Athanikar N, Welco A, Van Leuven M . Compatibility of calcium chloride and calcium gluconate with sodium phosphate in a mixed TPN solution. Am J Hosp Pharm 1980; 37: 673–674.

    CAS  PubMed  Google Scholar 

  23. Ronchera-oms CL, Allwood MC, Hardy G . Organic phosphates in parenteral nutrition: pouring fresh water into an old bucket. Nutrition 1996; 12: 388–389.

    CAS  Article  Google Scholar 

  24. Fewtrell MS, Bishop NJ, Edmonds CJ, Isaacs EB, Lucas A . Aluminum exposure from parenteral nutrition in preterm infants: bone health at 15-year follow-up. Pediatrics 2009; 124: 1372–1379.

    Article  Google Scholar 

  25. Draper HH, Yuen DE, Whyte RK . Calcium glycerophosphate as a source of calcium and phosphorus in total parenteral nutrition solutions. JPEN J Parenter Enteral Nutr 1991; 15: 176–180.

    CAS  Article  Google Scholar 

  26. Hanning RM, Atkinson SA, Whyte RK . Efficacy of calcium glycerophosphate vs conventional mineral salts for total parenteral nutrition in low-birth-weight infants: a randomized clinical trial. Am J Clin Nutr 1991; 54: 903–908.

    CAS  Article  Google Scholar 

  27. Hanning RM, Mitchell MK, Atkinson SA . In vitro solubility of calcium glycerophosphate versus conventional mineral salts in pediatric parenteral nutrition solutions. J Pediatr Gastroenterol Nutr 1989; 9: 67–72.

    CAS  Article  Google Scholar 

  28. Bohrer D, do Nascimento PC, Binotto R, Pomblum SC . Influence of the glass packing on the contamination of pharmaceutical products by aluminium. Part I: salts, glucose, heparin and albumin. J Trace Elem Med Biol 2001; 15: 95–101.

    CAS  Article  Google Scholar 

  29. Maghraoui S, Ayadi A, Audinot JN, Ammar AB, Jaafoura MH, Hili AE et al. Role of parietal and principal gastric mucosa cells in the phenomenon of concentration of aluminum and indium. Microsc Res Tech 2011; 75: 182–188.

    Article  Google Scholar 

  30. El-Sayed WM, Al-Kahtani MA, Abdel-Moneim AM . Prophylactic and therapeutic effects of taurine against aluminum-induced acute hepatotoxicity in mice. J Hazard Mater 2011; 192: 880–886.

    CAS  Article  Google Scholar 

  31. Bishop NJ, Morley R, Day JP, Lucas A . Aluminum neurotoxicity in preterm infants receiving intravenous-feeding solutions. N Engl J Med 1997; 336: 1557–1561.

    CAS  Article  Google Scholar 

  32. Lemire J, Mailloux R, Darwich R, Auger C, Appanna VD . The disruption of L-carnitine metabolism by aluminum toxicity and oxidative stress promotes dyslipidemia in human astrocytic and hepatic cells. Toxicol Lett 2011; 203: 219–226.

    CAS  Article  Google Scholar 

  33. National Kidney Foundation. K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am J Kidney Dis 2003; 42 (4 Suppl 3), S1–201.

    Google Scholar 

  34. Kan WC, Chien CC, Wu CC, Su SB, Hwang JC, Wang HY . Comparison of low-dose deferoxamine versus standard-dose deferoxamine for treatment of aluminium overload among haemodialysis patients. Nephrol Dial Transplant 2010; 25: 1604–1608.

    CAS  Article  Google Scholar 

  35. Klein GL, Snodgrass WR, Griffin MP, Miller NL, Alfrey AC . Hypocalcemia complicating deferoxamine therapy in an infant with parenteral nutrition-associated aluminum overload: evidence for a role of aluminum in the bone disease of infants. J Pediatr Gastroenterol Nutr 1989; 9: 400–403.

    CAS  Article  Google Scholar 

  36. Sherrard DJ, Walker JV, Boykin JL . Precipitation of dialysis dementia by deferoxamine treatment of aluminum-related bone disease. Am J Kidney Dis 1988; 12: 126–130.

    CAS  Article  Google Scholar 

  37. Bondy SC . The neurotoxicity of environmental aluminum is still an issue. Neurotoxicology 2010; 31: 575–581.

    CAS  Article  Google Scholar 

  38. Lillevang ST, Pedersen FB . Exacerbation of aluminium encephalopathy after treatment with desferrioxamine. Nephrol Dial Transplant 1989; 4: 676.

    CAS  PubMed  Google Scholar 

  39. Van Cutsem J, Boelaert JR . Effects of deferoxamine, feroxamine and iron on experimental mucormycosis (zygomycosis). Kidney Int 1989; 36: 1061–1068.

    CAS  Article  Google Scholar 

  40. Boelaert JR, de Locht M, Van Cutsem J, Kerrels V, Cantinieaux B, Verdonck A et al. Mucormycosis during deferoxamine therapy is a siderophore-mediated infection. In vitro and in vivo animal studies. J Clin Invest 1993; 91: 1979–1986.

    CAS  Article  Google Scholar 

  41. Parenteral drug products containing aluminum as an ingredient or a contaminant: response to Food and Drug Administration notice of intent and request for information. ASCN/A.S.P.E.N. Working Group on Standards for Aluminum Content of Parenteral Nutrition Solutions. JPEN J Parenter Enteral Nutr 1991; 15: 194–198.

  42. Aluminum in large and small volume parenterals used in total parenteral nutrition--FDA. Proposed rule. Fed Regist 1998; 63: 176–185.

  43. Food and Drug Administration. Aluminum in large and small volume parenterals used in total parenteral nutrition. Fed Regist 2000; 65: 4103–4111.

  44. Smith BS, Kothari H, Hayes BD, Tataronis G, Hudlin M, Doole J et al. Effect of additive selection on calculated aluminum content of parenteral nutrient solutions. Am J Health Syst Pharm 2007; 64: 730–739.

    CAS  Article  Google Scholar 

  45. Poole RL, Pieroni KP, Gaskari S, Dixon TK, Park K, Kerner JA . Aluminum in pediatric parenteral nutrition products: measured versus labeled content. J Pediatr Pharmacol Ther 2011; 16: 92–97.

    PubMed  PubMed Central  Google Scholar 

  46. de Oliveira SR, Bohrer D, Garcia SC, do Nascimento PC, Noremberg S . Aluminum content in intravenous solutions for administration to neonates: role of product preparation and administration methods. JPEN J Parenter Enteral Nutr 2010; 34: 322–328.

    CAS  Article  Google Scholar 

  47. Young D . FDA aluminum rule poses challenges for industry, pharmacists. Am J Health Syst Pharm 2004; 61: 742–744.

    Article  Google Scholar 

  48. Allwood MC . Aluminium in parenteral nutrition admixtures: an unnecessary risk? Nutrition 1999; 15: 958–959.

    CAS  Article  Google Scholar 

  49. Driscoll DF, Newton DW, Bistrian BR . Precipitation of calcium phosphate from parenteral nutrient fluids. Am J Hosp Pharm 1994; 51: 2834–2836.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Becky Lowis for her disinterested work with this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Hernández-Sánchez.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hernández-Sánchez, A., Tejada-González, P. & Arteta-Jiménez, M. Aluminium in parenteral nutrition: a systematic review. Eur J Clin Nutr 67, 230–238 (2013). https://doi.org/10.1038/ejcn.2012.219

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ejcn.2012.219

Keywords

  • aluminium
  • parenteral nutrition
  • bone disease
  • metabolic
  • Food and Drug Administration
  • toxicity

Further reading

Search

Quick links