Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Body composition in athletes and sports nutrition: an examination of the bioimpedance analysis technique

Abstract

Background/Objectives:

The purpose of the current review was to evaluate how body composition can be utilised in athletes, paying particular attention to the bioelectrical impedance analysis (BIA) technique.

Subjects/Methods:

Various body composition methods are discussed, as well as the unique characteristics of athletes that can lead to large errors when predicting fat mass (FM) and fat-free mass (FFM). Basic principles of BIA are discussed, and past uses of the BIA technique in athletes are explored. Single-prediction validation studies and studies tracking changes in FM and FFM are discussed with applications for athletes.

Results:

Although extensive research in the area of BIA and athletes has been conducted, there remains a large gap in the literature pertaining to a single generalised athlete equation developed using a multiple-compartment model that includes total body water (TBW).

Conclusions:

Until a generalised athlete-specific BIA equation developed from a multiple-compartment is published, it is recommended that generalised equations such as those published by Lukaski and Bolonchuk and Lohman be used in athletes. However, BIA equations developed for specific athletes may also produce acceptable values and are still acceptable for use until more research is conducted. The use of a valid BIA equation/device should produce values similar to those of hydrostatic weighing and dual-energy X-ray absorptiometry. However, researchers and practitioners need to understand the individual variability associated with BIA estimations for both single assessments and repeated measurements. Although the BIA method shows promise for estimating body composition in athletes, future research should focus on the development of general athlete-specific equations using a TBW-based three- or four-compartment model.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Durnin JV, Womersley J . Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br J Nutr 1974; 32: 77–97.

    CAS  PubMed  Google Scholar 

  2. Burke LM, Loucks AB, Broad N . Energy and carbohydrate for training and recovery. J Sports Sci 2006; 24: 675–685.

    PubMed  Google Scholar 

  3. Nelson KM, Weinsier RL, Long CL, Schutz Y . Prediction of resting energy expenditure from fat-free mass and fat mass. Am J Clin Nutr 1992; 56: 848–856.

    CAS  PubMed  Google Scholar 

  4. Wang ZM, Deurenberg P, Guo SS, Pietrobelli A, Wang J, Pierson RN et al. Six-compartment body composition model: inter-method comparisons of total body fat measurement. Int J Obes Relat Metab Disord 1998; 22: 329–337.

    CAS  PubMed  Google Scholar 

  5. Wang Z, Deurenberg P, Wang W, Pietrobelli A, Baumgartner RN, Heymsfield SB . Hydration of fat-free body mass: review and critique of a classic body-composition constant. Am J Clin Nutr 1999; 69: 833–841.

    CAS  PubMed  Google Scholar 

  6. Wang Z, Deurenberg P, Wang W, Pietrobelli A, Baumgartner RN, Heymsfield SB . Hydration of fat-free body mass: new physiological modeling approach. Am J Physiol 1999; 276 (6 Part 1), E995–E1003.

    CAS  PubMed  Google Scholar 

  7. Fahey TD, Akka L, Rolph R . Body composition and VO2 max of exceptional weight-trained athletes. J Appl Physiol 1975; 39: 559–561.

    CAS  PubMed  Google Scholar 

  8. Wilmore JH, Haskell WL . Body composition and endurance capacity of professional football players. J Appl Physiol 1972; 33: 564–567.

    CAS  PubMed  Google Scholar 

  9. Welch BE, Riendeau RP, Crisp CE, Isenstein RS . Relationship of maximal oxygen consumption to various components of body composition. J Appl Physiol 1958; 12: 395–398.

    CAS  PubMed  Google Scholar 

  10. Prior BM, Modlesky CM, Evans EM, Sloniger MA, Saunders MJ, Lewis RD et al. Muscularity and the density of the fat-free mass in athletes. J Appl Physiol 2001; 90: 1523–1531.

    CAS  PubMed  Google Scholar 

  11. Moon JR, Eckerson JM, Tobkin SE, Smith AE, Lockwood CM, Walter AA et al. Estimating body fat in NCAA division I female athletes: a five-compartment model validation of laboratory methods. Eur J Appl Physiol 2009; 105: 119–130.

    PubMed  Google Scholar 

  12. Moon JR, Tobkin SE, Smith AE, Lockwood CM, Walter AA, Cramer JT et al. Anthropometric estimations of percent body fat in NCAA division I female athletes: a 4-compartment model validation. J Strength Cond Res 2009; 23: 1068–1076.

    PubMed  Google Scholar 

  13. Silva AM, Minderico CS, Teixeira PJ, Pietrobelli A, Sardinha LB . Body fat measurement in adolescent athletes: multicompartment molecular model comparison. Eur J Clin Nutr 2006; 60: 955–964.

    CAS  PubMed  Google Scholar 

  14. Cole KS . Permeability and impermeability of cell membranes for ions. Cold Spring Harb Symp Quant Biol 1940; 8: 110–122.

    CAS  Google Scholar 

  15. Hanai T Electrical Properties of Emulsions in Emulsion Science. Academic Press: London-New York, 1968.

    Google Scholar 

  16. Matthie JR . Bioimpedance measurements of human body composition: critical analysis and outlook. Expert Review of Medical Devices 2008; 5: 239–261.

    PubMed  Google Scholar 

  17. Kushner RF . Bioelectrical impedance analysis: a review of principles and applications. J Am Coll Nutr 1992; 11: 199–209.

    CAS  PubMed  Google Scholar 

  18. Fricke H . A mathematical treatment of the electrical conductivity and capacity of disperse system. II. The capacity of a suspension of conducting spheroids surrounded by a non-conducting membrane for a current of low frequency. Physiol Rev 1925; 26: 678–681.

    Google Scholar 

  19. De Lorenzo A, Andreoli A, Matthie J, Withers P . Predicting body cell mass with bioimpedance by using theoretical methods: a technological review. J Appl Physiol 1997; 82: 1542–1558.

    CAS  PubMed  Google Scholar 

  20. Nyboer J, Sedensky JA . Bioelectrical impedance during renal dialysis. Proc Clin Dial Transpl Forum 1974; 4: 214–219.

    Google Scholar 

  21. Thomasett A . Bio-electrical properties of tissue impedance measurements. Lyon Medical 1962; 207: 107–118.

    Google Scholar 

  22. Pietrobelli A, Wang Z, Formica C, Heymsfield SB . Dual-energy X-ray absorptiometry: fat estimation errors due to variation in soft tissue hydration. Am J Physiol 1998; 274 (5 Part 1), E808–E816.

    CAS  PubMed  Google Scholar 

  23. Kotler DP, Burastero S, Wang J, Pierson RN . Prediction of body cell mass, fat-free mass, and total body water with bioelectrical impedance analysis: effects of race, sex, and disease. Am J Clin Nutr 1996; 64 (3 Suppl), 489S–497SS.

    CAS  PubMed  Google Scholar 

  24. Piccoli A, Pastori G, Codognotto M, Paoli A . Equivalence of information from single frequency v. bioimpedance spectroscopy in bodybuilders. British J Nutr 2007; 97: 182–192.

    CAS  Google Scholar 

  25. Piccoli A, Pastori G, Guizzo M, Rebeschini M, Naso A, Cascone C . Equivalence of information from single versus multiple frequency bioimpedance vector analysis in hemodialysis. Kidney Int 2005; 67: 301–313.

    PubMed  Google Scholar 

  26. Moon JR, Smith AE, Tobkin SE, Lockwood CM, Kendall KL, Graef JL et al. Total body water changes after an exercise intervention tracked using bioimpedance spectroscopy: a deuterium oxide comparison. Clin Nutr (Edinburgh, Scotland) 2009; 28: 516–525.

    Google Scholar 

  27. Moon JR, Tobkin SE, Roberts MD, Dalbo VJ, Kerksick CM, Bemben MG et al. Total body water estimations in healthy men and women using bioimpedance spectroscopy: a deuterium oxide comparison. Nutr Metab (Lond) 2008; 5: 7.

    Google Scholar 

  28. Armstrong LE, Kenefick RW, Castellani JW, Riebe D, Kavouras SA, Kuznicki JT et al. Bioimpedance spectroscopy technique: intra-, extracellular, and total body water. Med Sci Sports Exerc. 1997; 29: 1657–1663.

    CAS  PubMed  Google Scholar 

  29. Cox-Reijven PL, Soeters PB . Validation of bio-impedance spectroscopy: effects of degree of obesity and ways of calculating volumes from measured resistance values. Int J Obes Relat Metab Disord 2000; 24: 271–280.

    CAS  PubMed  Google Scholar 

  30. Van Loan MD . Estimates of fat-free mass (FFM) by densitometry, dual energy X-ray absorptiometry (DXA), and bioimpedance spectroscopy (BIS) in caucasian and Chinese-American women. Appl Rad Isotopes 1998; 49: 751–752.

    CAS  Google Scholar 

  31. Kaysen GA, Zhu F, Sarkar S, Heymsfield SB, Wong J, Kaitwatcharachai C et al. Estimation of total-body and limb muscle mass in hemodialysis patients by using multifrequency bioimpedance spectroscopy. Am J Clin Nutr 2005; 82: 988–995.

    CAS  PubMed  Google Scholar 

  32. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Manuel Gomez J et al. Bioelectrical impedance analysis-part II: utilization in clinical practice. Clin Nutr (Edinburgh, Scotland) 2004; 23: 1430–1453.

    Google Scholar 

  33. Moon JR, Stout JR, Smith AE, Tobkin SE, Lockwood CM, Kendall KL et al. Reproducibility and validity of bioimpedance spectroscopy for tracking changes in total body water: implications for repeated measurements. Br J Nutr 2010; 104: 1384–1394.

    CAS  PubMed  Google Scholar 

  34. Quiterio AL, Silva AM, Minderico CS, Carnero EA, Fields DA, Sardinha LB . Total body water measurements in adolescent athletes: a comparison of six field methods with deuterium dilution. J Strength Cond Res 2009; 23: 1225–1237.

    PubMed  Google Scholar 

  35. Webster BL, Barr SI . Body composition analysis of female adolescent athletes: comparing six regression equations. Med Sci Sports Exerc 1993; 25: 648–653.

    CAS  PubMed  Google Scholar 

  36. Giada F, Zuliani G, Baldo-Enzi G, Palmieri E, Volpato S, Vitale E et al. Lipoprotein profile, diet and body composition in athletes practicing mixed an anaerobic activities. J Sports Med Phys Fitness 1996; 36: 211–216.

    CAS  PubMed  Google Scholar 

  37. Bouix D, Peyreigne C, Raynaud E, Monnier JF, Micallef JP, Brun JF . Relationships among body composition, hemorheology and exercise performance in rugbymen. Clin Hemorheol Microcirc 1998; 19: 245–254.

    CAS  PubMed  Google Scholar 

  38. Manetti P, Toncelli L, Vono MC, Capalbo A, Boddi V, Rostagno C et al. The effects of training on skeletal and cardiac muscle mass in professional soccer players. Ann Ital Med Int 1999; 14: 166–171.

    CAS  PubMed  Google Scholar 

  39. Grund A, Krause H, Kraus M, Siewers M, Rieckert H, Muller MJ . Association between different attributes of physical activity and fat mass in untrained, endurance- and resistance-trained men. Eur J Appl Physiol 2001; 84: 310–320.

    CAS  PubMed  Google Scholar 

  40. Gurd B, Klentrou P . Physical and pubertal development in young male gymnasts. J Appl Physiol 2003; 95: 1011–1015.

    CAS  PubMed  Google Scholar 

  41. Astorino TA, Tam PA, Rietschel JC, Johnson SM, Freedman TP . Changes in physical fitness parameters during a competitive field hockey season. J Strength Cond Res/Nat Strength Cond Assoc 2004; 18: 850–854.

    Google Scholar 

  42. Mihajlovic B, Mijatov S . Body composition analysis in ballet dancers. Med Pregl 2003; 56: 579–583.

    PubMed  Google Scholar 

  43. Knechtle B, Salas Fraire O, Andonie JL, Kohler G . Effect of a multistage ultra-endurance triathlon on body composition: World Challenge Deca Iron Triathlon 2006. Br J Sports Med 2008; 42: 121–125. discussion 5.

    CAS  PubMed  Google Scholar 

  44. Quiterio AL, Carnero EA, Silva AM, Baptista F, Sardinha LB . Weekly training hours are associated with molecular and cellular body composition levels in adolescent athletes. J Sports Med Phys Fitness 2009; 49: 54–63.

    CAS  PubMed  Google Scholar 

  45. Knechtle B, Wirth A, Knechtle P, Rosemann T . Increase of total body water with decrease of body mass while running 100 km nonstop—formation of edema? Res Q Exerc Sport 2009; 80: 593–603.

    PubMed  Google Scholar 

  46. Deurenberg P, Weststrate JA, Paymans I, van der Kooy K . Factors affecting bioelectrical impedance measurements in humans. Eur J Clin Nutr 1988; 42: 1017–1022.

    CAS  PubMed  Google Scholar 

  47. Gleichauf CN, Roe DA . The menstrual cycle’s effect on the reliability of bioimpedance measurements for assessing body composition. Am J Clin Nutr 1989; 50: 903–907.

    CAS  PubMed  Google Scholar 

  48. Bunt JC, Lohman TG, Boileau RA . Impact of total body water fluctuations on estimation of body fat from body density. Med Sci Sports Exerc 1989; 21: 96–100.

    CAS  PubMed  Google Scholar 

  49. Saunders MJ, Blevins JE, Broeder CE . Effects of hydration changes on bioelectrical impedance in endurance trained individuals. Med Sci Sports Exerc 1998; 30: 885–892.

    CAS  PubMed  Google Scholar 

  50. Hortobagyi T, Israel RG, Houmard JA, McCammon MR, O'Brien KF . Comparison of body composition assessment by hydrodensitometry, skinfolds, and multiple site near-infrared spectrophotometry. Eur J Clin Nutr 1992; 46: 205–211.

    CAS  PubMed  Google Scholar 

  51. Eckerson JM, Evetovich TK, Stout JR, Housh TJ, Johnson GO, Housh DJ et al. Validity of bioelectrical impedence equations for estimating fat-free weight in high school female gymnasts. Med Sci Sports Exerc 1997; 29: 962–968.

    CAS  PubMed  Google Scholar 

  52. Eckerson JM, Housh TJ, Johnson GO . Validity of bioelectrical impedance equations for estimating fat-free weight in lean males. Med Sci Sports Exerc 1992; 24: 1298–1302.

    CAS  PubMed  Google Scholar 

  53. Oppliger RA, Nielsen DH, Shetler AC, Crowley ET, Albright JP . Body composition of collegiate football players: bioelectrical impedance and skinfolds compared to hydrostatic weighing. J Orthop Sports Phys Ther 1992; 15: 187–192.

    CAS  PubMed  Google Scholar 

  54. Williams CA, Bale P . Bias and limits of agreement between hydrodensitometry, bioelectrical impedance and skinfold calipers measures of percentage body fat. Eur J Appl Physiol 1998; 77: 271–277.

    CAS  Google Scholar 

  55. Civar S, Aktop A, Tercan E, Ozdol Y, Ozer K . Validity of leg-to-leg bioelectrical impedance measurement in highly active women. J Strength Cond Res 2006; 20: 359–365.

    PubMed  Google Scholar 

  56. Portal S, Rabinowitz J, Adler-Portal D, Burstein RP, Lahav Y, Meckel Y et al. Body fat measurements in elite adolescent volleyball players: correlation between skinfold thickness, bioelectrical impedance analysis, air-displacement plethysmography, and body mass index percentiles. J Pediatr Endocrinol Metab 2010; 23: 395–400.

    PubMed  Google Scholar 

  57. Pacy PJ, Quevedo M, Gibson NR, Cox M, Koutedakis Y, Millward J . Body composition measurement in elite heavyweight oarswomen: a comparison of five methods. J Sports Med Phys Fitness 1995; 35: 67–74.

    CAS  PubMed  Google Scholar 

  58. Ishiguro N, Kanehisa H, Miyatani M, Masuo Y, Fukunaga T . A comparison of three bioelectrical impedance analyses for predicting lean body mass in a population with a large difference in muscularity. Eur J Appl Physiol 2005; 94: 25–35.

    PubMed  Google Scholar 

  59. Dixon CB, Deitrick RW, Cutrufello PT, Drapeau LL, Lovallo SJ . Effect of mode selection when using leg-to-leg BIA to estimate body fat in collegiate wrestlers. J Sports Med Phys Fitness 2006; 46: 265–270.

    CAS  PubMed  Google Scholar 

  60. Dixon CB, Deitrick RW, Pierce JR, Cutrufello PT, Drapeau LL . Evaluation of the BOD POD and leg-to-leg bioelectrical impedance analysis for estimating percent body fat in National Collegiate Athletic Association Division III collegiate wrestlers. J Strength Cond Res 2005; 19: 85–91.

    PubMed  Google Scholar 

  61. De Lorenzo A, Bertini I, Iacopino L, Pagliato E, Testolin C, Testolin G . Body composition measurement in highly trained male athletes. A comparison of three methods. J Sports Med Phys Fitness 2000; 40: 178–183.

    CAS  PubMed  Google Scholar 

  62. Esco MR, Olson MS, Williford HN, Lizana SN, Russell AR . The accuracy of hand-to-hand bioelectrical impedance analysis in predicting body composition in college-age female athletes. J Strength Cond Res 2011; 25: 1040–1045.

    PubMed  Google Scholar 

  63. Fornetti WC, Pivarnik JM, Foley JM, Fiechtner JJ . Reliability and validity of body composition measures in female athletes. J Appl Physiol 1999; 87: 1114–1122.

    CAS  PubMed  Google Scholar 

  64. Houtkooper L, Mullins VA, Going SB, Brown CH, Lohman TG . Body composition profiles of elite American heptathletes. Int J Sport Nutr Exerc Metab 2001; 11: 162–173.

    CAS  Google Scholar 

  65. Pichard C, Kyle UG, Gremion G, Gerbase M, Slosman DO . Body composition by x-ray absorptiometry and bioelectrical impedance in female runners. Med Sci Sports Exerc 1997; 29: 1527–1534.

    CAS  PubMed  Google Scholar 

  66. Stewart AD, Hannan WJ . Prediction of fat and fat-free mass in male athletes using dual X-ray absorptiometry as the reference method. J Sports Sci 2000; 18: 263–274.

    CAS  PubMed  Google Scholar 

  67. Svantesson U, Zander M, Klingberg S, Slinde F . Body composition in male elite athletes, comparison of bioelectrical impedance spectroscopy with dual energy X-ray absorptiometry. J Neg Results Biomed 2008; 7: 1.

    Google Scholar 

  68. Yannakoulia M, Keramopoulos A, Tsakalakos N, Matalas AL . Body composition in dancers: the bioelectrical impedance method. Med Sci Sports Exerc 2000; 32: 228–234.

    CAS  PubMed  Google Scholar 

  69. Hetzler RK, Kimura IF, Haines K, Labotz M, Smith J . A comparison of bioelectrical impedance and skinfold measurements in determining minimum wrestling weights in high school wrestlers. J Athl Train 2006; 41: 46–51.

    PubMed  PubMed Central  Google Scholar 

  70. Huygens W, Claessens AL, Thomis M, Loos R, Van Langendonck L, Peeters M et al. Body composition estimations by BIA versus anthropometric equations in body builders and other power athletes. J Sports Med Phys Fitness 2002; 42: 45–55.

    CAS  PubMed  Google Scholar 

  71. Marra M, Caldara A, Montagnese C, De Filippo E, Pasanisi F, Contaldo F et al. Bioelectrical impedance phase angle in constitutionally lean females, ballet dancers and patients with anorexia nervosa. Eur J Clin Nutr 2009; 63: 905–908.

    CAS  PubMed  Google Scholar 

  72. Ostojic SM . Estimation of body fat in athletes: skinfolds vs bioelectrical impedance. J Sports Med Phys Fitness 2006; 46: 442–446.

    CAS  PubMed  Google Scholar 

  73. Andreoli A, Melchiorri G, Volpe SL, Sardella F, Iacopino L, De Lorenzo A . Multicompartment model to assess body composition in professional water polo players. J Sports Med Phys Fitness 2004; 44: 38–43.

    CAS  PubMed  Google Scholar 

  74. Clark RR, Bartok C, Sullivan JC, Schoeller DA . Minimum weight prediction methods cross-validated by the four-component model. Med Sci Sports Exerc 2004; 36: 639–647.

    PubMed  Google Scholar 

  75. Hannan WJ, Cowen SJ, Freeman CP, Wrate RM . Can bioelectrical impedance improve the prediction of body fat in patients with eating disorders? Eur J Clin Nutr 1993; 47: 741–746.

    CAS  PubMed  Google Scholar 

  76. Van Loan MD . Bioelectrical impedance analysis to determine fat-free mass, total body water and body fat. Sports Med (Auckland, NZ) 1990; 10: 205–217.

    CAS  Google Scholar 

  77. Heyward VH, Wagner DR Applied Body Composition Assessments. Human Kinetics: Champaign, IL, 2004.

    Google Scholar 

  78. Hortobagyi T, Israel RG, Houmard JA, O'Brien KF, Johns RA, Wells JM . Comparison of four methods to assess body composition in black and white athletes. Int J Sport Nutr 1992; 2: 60–74.

    CAS  PubMed  Google Scholar 

  79. Pearman P, Hunter G, Hendricks C, O'Sullivan P . Comparison of hydrostatic weighing and bioelectric impedance measurements in determining body composition pre- and postdehydration. J Orthop Sports Phys Ther 1989; 10: 451–455.

    CAS  PubMed  Google Scholar 

  80. Kilduff LP, Lewis S, Kingsley MI, Owen NJ, Dietzig RE . Reliability and detecting change following short-term creatine supplementation: comparison of two-component body composition methods. J Strength Cond Res 2007; 21: 378–384.

    PubMed  Google Scholar 

  81. Vazquez JA, Janosky JE . Validity of bioelectrical-impedance analysis in measuring changes in lean body mass during weight reduction. Am J Clin Nutr 1991; 54: 970–975.

    CAS  PubMed  Google Scholar 

  82. Deurenberg P, Weststrate JA, Hautvast JG . Changes in fat-free mass during weight loss measured by bioelectrical impedance and by densitometry. Am J Clin Nutr 1989; 49: 33–36.

    CAS  PubMed  Google Scholar 

  83. Hendel HW, Gotfredsen A, Hojgaard L, Andersen T, Hilsted J . Change in fat-free mass assessed by bioelectrical impedance, total body potassium and dual energy X-ray absorptiometry during prolonged weight loss. Scand J Clin Lab Invest 1996; 56: 671–679.

    CAS  PubMed  Google Scholar 

  84. Kushner RF, Kunigk A, Alspaugh M, Andronis PT, Leitch CA, Schoeller DA . Validation of bioelectrical-impedance analysis as a measurement of change in body composition in obesity. Am J Clin Nutr 1990; 52: 219–223.

    CAS  PubMed  Google Scholar 

  85. Evans EM, Saunders MJ, Spano MA, Arngrimsson SA, Lewis RD, Cureton KJ . Body-composition changes with diet and exercise in obese women: a comparison of estimates from clinical methods and a 4-component model. Am J Clin Nutr 1999; 70: 5–12.

    CAS  PubMed  Google Scholar 

  86. Minderico CS, Silva AM, Keller K, Branco TL, Martins SS, Palmeira AL et al. Usefulness of different techniques for measuring body composition changes during weight loss in overweight and obese women. Br J Nutr 2008; 99: 432–441.

    CAS  PubMed  Google Scholar 

  87. Ross R, Leger L, Martin P, Roy R . Sensitivity of bioelectrical impedance to detect changes in human body composition. J Appl Physiol 1989; 67: 1643–1648.

    CAS  PubMed  Google Scholar 

  88. van der Kooy K, Leenen R, Deurenberg P, Seidell JC, Westerterp KR, Hautvast JG . Changes in fat-free mass in obese subjects after weight loss: a comparison of body composition measures. Int J Obes Relat Metab Disord 1992; 16: 675–683.

    CAS  PubMed  Google Scholar 

  89. Elberg J, McDuffie JR, Sebring NG, Salaita C, Keil M, Robotham D et al. Comparison of methods to assess change in children’s body composition. Am J Clin Nutr 2004; 80: 64–69.

    CAS  PubMed  Google Scholar 

  90. Evans EM, Rowe DA, Misic MM, Prior BM, Arngrimsson SA . Skinfold prediction equation for athletes developed using a four-component model. Med Sci Sports Exerc 2005; 37: 2006–2011.

    PubMed  Google Scholar 

  91. Jackson AS, Pollock ML, Ward A . Generalized equations for predicting body density of women. Med Sci Sports Exerc 1980; 12: 175–181.

    CAS  PubMed  Google Scholar 

  92. Jackson AS, Pollock ML . Generalized equations for predicting body density of men. Br J Nutr 1978; 40: 497–504.

    CAS  PubMed  Google Scholar 

  93. Lukaski HC, Bolonchuk WW (eds). Theory and Validation of the Tetrapolar Bioelectrical Impedance Method to Assess Human Body Composition. Institute of Physical Science and Medicine: London, 1987.

    Google Scholar 

  94. Lohman TG Human Body Composition. Human Kinetics: Champaign, IL, 1996.

    Google Scholar 

Download references

Acknowledgements

Publication of this article was supported by a grant from seca Gmbh & Co. KG, Hamburg, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J R Moon.

Ethics declarations

Competing interests

JRM is Research Institute Director at MusclePharm Corporation, but the corporation was not involved in the submission.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moon, J. Body composition in athletes and sports nutrition: an examination of the bioimpedance analysis technique. Eur J Clin Nutr 67 (Suppl 1), S54–S59 (2013). https://doi.org/10.1038/ejcn.2012.165

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ejcn.2012.165

Keywords

This article is cited by

Search

Quick links