Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Carbohydrates, glycemic index and diabetes mellitus

Effect of cocoa and green tea on biomarkers of glucose regulation, oxidative stress, inflammation and hemostasis in obese adults at risk for insulin resistance

Abstract

Background/Objectives:

Flavanols may provide protection against insulin resistance, but little is known about the amounts and types of flavanols that may be efficacious.

Subjects/Methods:

This study was designed to determine whether cocoa flavanols, over a range of intakes, improve biomarkers of glucose regulation, inflammation and hemostasis in obese adults at risk for insulin resistance. As an adjunct, green tea and cocoa flavanols were compared for their ability to modulate these biomarkers. In a randomized crossover design, 20 adults consumed a controlled diet for 5 days along with four cocoa beverages containing 30–900 mg flavanol per day, or tea matched to a cocoa beverage for monomeric flavanol content.

Results:

Cocoa beverages produced no significant changes in glucose, insulin, total area under the concentration–time curve (AUC) for glucose or total insulin AUC. As the dose of cocoa flavanols increased, total 8-isoprostane concentrations were lowered (linear contrast, P=0.02), as were C-reactive protein (CRP) concentrations (linear contrast, P=0.01). The relationship between cocoa flavanol levels and interleukin-6 (IL-6) concentrations was quadratic, suggesting that a maximum effective dose was achieved (quadratic contrast, P=0.01). There were no significant effects on measured indices of glucose regulation, nor on those of total 8-isoprostane, CRP and IL-6 concentrations, when cocoa and green tea were compared. However, relative to cocoa, green tea lowered fibrinogen concentrations (P=0.0003).

Conclusions:

Short-term intake of cocoa and green tea flavanols does not appear to improve glucose metabolism; they do affect selected markers of one or more measures of oxidative stress, inflammation or hemostasis in obese adults at risk for insulin resistance.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1

References

  1. Meigs JB, Rutter MK, Sullivan LM, Fox CS, D’Agostino RB, Wilson PW . Impact of insulin resistance on risk of type 2 diabetes and cardiovascular disease in people with metabolic syndrome. Diabetes Care 2007; 30: 1219–1225.

    Article  CAS  Google Scholar 

  2. Lorenzo C, Wagenknecht LE, D’Agostino RB, Rewers MJ, Karter AJ, Haffner SM . Insulin resistance, beta-cell dysfunction, and conversion to type 2 diabetes in a multiethnic population: the Insulin Resistance Atherosclerosis Study. Diabetes Care 2010; 33: 67–72.

    Article  CAS  Google Scholar 

  3. Reaven G . Insulin resistance, type 2 diabetes mellitus, and cardiovascular disease: the end of the beginning. Circulation 2005; 112: 3030–3032.

    Article  Google Scholar 

  4. Reaven GM . Pathophysiology of insulin resistance in human disease. Physiol Rev 1995; 75: 473–486.

    Article  CAS  Google Scholar 

  5. Eckel RH, Kahn SE, Ferrannini E, Goldfine AB, Nathan DM, Schwartz MW et al. Obesity and type 2 diabetes: what can be unified and what needs to be individualized? Diabetes Care 2011; 34: 1424–1430.

    Article  Google Scholar 

  6. Esposito K, Maiorino MI, Ceriello A, Giugliano D . Prevention and control of type 2 diabetes by Mediterranean diet: a systematic review. Diabetes Res Clin Pract 2010; 89: 97–102.

    Article  CAS  Google Scholar 

  7. Salas-Salvado J, Bullo M, Babio N, Martinez-Gonzalez MA, Ibarrola-Jurado N, Basora J et al. Reduction in the incidence of type 2 diabetes with the Mediterranean diet: results of the PREDIMED-Reus nutrition intervention randomized trial. Diabetes Care 2011; 34: 14–19.

    Article  Google Scholar 

  8. Serra-Majem L, Roman B, Estruch R . Scientific evidence of interventions using the Mediterranean diet: a systematic review. Nutr Rev 2006; 64 (Part 2), S27–S47.

    Article  Google Scholar 

  9. Shai I, Schwarzfuchs D, Henkin Y, Shahar DR, Witkow S, Greenberg I et al. Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N Engl J Med 2008; 359: 229–241.

    Article  CAS  Google Scholar 

  10. Cooper KA, Donovan JL, Waterhouse AL, Williamson G . Cocoa and health: a decade of research. Br J Nutr 2007; 99: 1–11.

    Article  Google Scholar 

  11. Engler MB, Engler MM . The emerging role of flavonoid-rich cocoa and chocolate in cardiovascular health and disease. Nutr Rev 2006; 64: 109–118.

    Article  Google Scholar 

  12. Basu A, Lucas EA . Mechanisms and effects of green tea on cardiovascular health. Nutr Rev 2007; 65 (Part 1), 361–375.

    Article  Google Scholar 

  13. Cabrera C, Artacho R, Gimenez R . Beneficial effects of green tea--a review. J Am Coll Nutr 2006; 25: 79–99.

    Article  CAS  Google Scholar 

  14. Corti R, Flammer AJ, Hollenberg NK, Luscher TF . Cocoa and cardiovascular health. Circulation 2009; 119: 1433–1441.

    Article  Google Scholar 

  15. Fukino Y, Ikeda A, Maruyama K, Aoki N, Okubo T, Iso H . Randomized controlled trial for an effect of green tea-extract powder supplementation on glucose abnormalities. Eur J Clin Nutr 2007; 62: 953–960.

    Article  Google Scholar 

  16. Grassi D, Necozione S, Lippi C, Croce G, Valeri L, Pasqualetti P et al. Cocoa reduces blood pressure and insulin resistance and improves endothelium-dependent vasodilation in hypertensives. Hypertension 2005; 46: 398–405.

    Article  CAS  Google Scholar 

  17. Shrime MG, Bauer SR, McDonald AC, Chowdhury NH, Coltart CE, Ding EL . Flavonoid-rich cocoa consumption affects multiple cardiovascular risk factors in a meta-analysis of short-term studies. J Nutr 2011; 141: 1982–1988.

    Article  CAS  Google Scholar 

  18. Muniyappa R, Hall G, Kolodziej TL, Karne RJ, Crandon SK, Quon MJ . Cocoa consumption for 2 wk enhances insulin-mediated vasodilatation without improving blood pressure or insulin resistance in essential hypertension. Am J Clin Nutr 2008; 88: 1685–1696.

    Article  CAS  Google Scholar 

  19. Stern SE, Williams K, Ferrannini E, DeFronzo RA, Bogardus C, Stern MP . Identification of individuals with insulin resistance using routine clinical measurements. Diabetes 2005; 54: 333–339.

    Article  CAS  Google Scholar 

  20. Bonora E, Kiechl S, Willeit J, Oberhollenzer F, Egger G, Targher G et al. Prevalence of insulin resistance in metabolic disorders: the Bruneck Study. Diabetes 1998; 47: 1643–1649.

    Article  CAS  Google Scholar 

  21. Katz A, Nambi SS, Mather K, Baron AD, Follmann DA, Sullivan G et al. Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab 2000; 85: 2402–2410.

    Article  CAS  Google Scholar 

  22. Mannucci E, Bardini G, Ognibene A, Rotella CM . Comparison between 2 insulin sensitivity indexes in obese patients. Diabetes Care 2000; 23: 1042–1043.

    Article  CAS  Google Scholar 

  23. Matsuda M, DeFronzo RA . Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 1999; 22: 1462–1470.

    Article  CAS  Google Scholar 

  24. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC . Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28: 412–419.

    Article  CAS  Google Scholar 

  25. Antuna-Puente B, Disse E, Rabasa-Lhoret R, Laville M, Capeau J, Bastard JP . How can we measure insulin sensitivity/resistance? Diabetes Metab 2011; 37: 179–188.

    Article  CAS  Google Scholar 

  26. Baer DJ, Novotny JA, Harris GK, Stote K, Clevidence B, Rumpler WV . Oolong tea does not improve glucose metabolism in non-diabetic adults. Eur J Clin Nutr 2011; 65: 87–93.

    Article  CAS  Google Scholar 

  27. American Diabetes Association Diagnosis and classification of diabetes mellitus. Diabetes Care 2011; 34: S62–S69.

    Article  Google Scholar 

  28. Balzer J, Rassaf T, Heiss C, Kleinbongard P, Lauer T, Merx M et al. Sustained benefits in vascular function through flavanol-containing cocoa in medicated diabetic patients a double-masked, randomized, controlled trial. J Am Coll Cardiol 2008; 51: 2141–2149.

    Article  CAS  Google Scholar 

  29. Grassi D, Desideri G, Necozione S, Lippi C, Casale R, Properzi G et al. Blood pressure is reduced and insulin sensitivity increased in glucose-intolerant, hypertensive subjects after 15 days of consuming high-polyphenol dark chocolate. J Nutr 2008; 138: 1671–1676.

    Article  CAS  Google Scholar 

  30. Grassi D, Lippi C, Necozione S, Desideri G, Ferri C . Short-term administration of dark chocolate is followed by a significant increase in insulin sensitivity and a decrease in blood pressure in healthy persons. Am J Clin Nutr 2005; 81: 611–614.

    Article  CAS  Google Scholar 

  31. Keaney JF, Larson MG, Vasan RS, Wilson PW, Lipinska I, Corey D et al. Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham Study. Arterioscler Thromb Vasc Biol 2003; 23: 434–439.

    Article  CAS  Google Scholar 

  32. Meigs JB, Larson MG, Fox CS, Keaney JF, Vasan RS, Benjamin EJ . Association of oxidative stress, insulin resistance, and diabetes risk phenotypes: the Framingham Offspring Study. Diabetes Care 2007; 30: 2529–2535.

    Article  CAS  Google Scholar 

  33. Roberts CK, Sindhu KK . Oxidative stress and metabolic syndrome. Life Sci 2009; 84: 705–712.

    Article  CAS  Google Scholar 

  34. Wiswedel I, Hirsch D, Kropf S, Gruening M, Pfister E, Schewe T et al. Flavanol-rich cocoa drink lowers plasma F(2)-isoprostane concentrations in humans. Free Radic Biol Med 2004; 37: 411–421.

    Article  CAS  Google Scholar 

  35. Ridker PM, Hennekens CH, Buring JE, Rifai N . C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med 2000; 342: 836–843.

    Article  CAS  Google Scholar 

  36. Gu L, House SE, Wu X, Ou B, Prior RL . Procyanidin and catechin contents and antioxidant capacity of cocoa and chocolate products. J Agric Food Chem 2006; 54: 4057–4061.

    Article  CAS  Google Scholar 

  37. Danesh J, Lewington S, Thompson SG, Lowe GD, Collins R, Kostis JB et al. Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: an individual participant meta-analysis. JAMA 2005; 294: 1799–1809.

    CAS  Google Scholar 

  38. Kannel WB . Overview of hemostatic factors involved in atherosclerotic cardiovascular disease. Lipids 2005; 40: 1215–1220.

    Article  CAS  Google Scholar 

  39. Arab L, Liu W, Elashoff D . Green and black tea consumption and risk of stroke: a meta-analysis. Stroke 2009; 40: 1786–1792.

    Article  CAS  Google Scholar 

  40. de Maat MP, Pijl H, Kluft C, Princen HM . Consumption of black and green tea had no effect on inflammation, haemostasis and endothelial markers in smoking healthy individuals. Eur J Clin Nutr 2000; 54: 757–763.

    Article  CAS  Google Scholar 

  41. Monsen E Research: Successful Approaches 3rd edn, Monsen E, (ed), American Dietetic Association: Chicago, Illinois, USA, 2008.

    Google Scholar 

  42. Grassi D, Mulder TP, Draijer R, Desideri G, Molhuizen HO, Ferri C . Black tea consumption dose-dependently improves flow-mediated dilation in healthy males. J Hypertens 2009; 27: 774–781.

    Article  CAS  Google Scholar 

  43. Vazquez-Agell M, Urpi-Sarda M, Sacanella E, Camino-Lopez S, Chiva-Blanch G, Llorente-Cortes V et al. Cocoa consumption reduces NF-kappaB activation in peripheral blood mononuclear cells in humans. Nutr Metab Cardiovasc Dis 2011 ; e-pub ahead of print 6 August 2011 doi:10.1016/j.numecd.2011.03.015.

  44. Venables MC, Hulston CJ, Cox HR, Jeukendrup AE . Green tea extract ingestion, fat oxidation, and glucose tolerance in healthy humans. Am J Clin Nutr 2008; 87: 778–784.

    Article  CAS  Google Scholar 

  45. Henning SM, Niu Y, Lee NH, Thames GD, Minutti RR, Wang H et al. Bioavailability and antioxidant activity of tea flavanols after consumption of green tea, black tea, or a green tea extract supplement. Am J Clin Nutr 2004; 80: 1558–1564.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mars Incorporated for providing the cocoa treatment beverages. We also thank Dr Catherine Kwik-Uribe for providing flavanol analysis of the cocoa treatment beverages and thoughtful manuscript review. This study was supported by the US Department of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K S Stote.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stote, K., Clevidence, B., Novotny, J. et al. Effect of cocoa and green tea on biomarkers of glucose regulation, oxidative stress, inflammation and hemostasis in obese adults at risk for insulin resistance. Eur J Clin Nutr 66, 1153–1159 (2012). https://doi.org/10.1038/ejcn.2012.101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ejcn.2012.101

Keywords

  • cocoa
  • green tea
  • polyphenols
  • insulin resistance
  • obesity

This article is cited by

Search

Quick links