Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Invited Review
  • Published:

Trans fatty acids, insulin resistance and diabetes

Abstract

The possible relationship between consumption of trans fatty acids (TFAs) and risk of insulin resistance or development of diabetes mellitus type II has been considered by a number of human and animal studies over the past decade. This review evaluates the evidence, and concludes that there is limited evidence for a weak association at high TFA intakes, but very little convincing evidence that habitual exposure as part of a standard western diet has a significant contribution to risk of diabetes or insulin resistance. The possibility of increased risk for individuals with particular genotypes (such as the FABP2 Thr54 allele) is of interest, but further work would be required to provide sufficient evidence of any association.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  • Almeida JC, Gross JL, Canani LH, Zelmanovitz T, Perassolo MS, Azevedo MJ (2010). The Ala54Thr polymorphism of the FABP2 gene influences the postprandial fatty acids in patients with type 2 diabetes. J Clin Endocrinol Metab 95: 3909–3917.

    Article  CAS  Google Scholar 

  • Alstrup KK, Brock B, Hermansen K (2004). Long-term exposure of INS-1 cells to cis and trans fatty acids influences insulin release and fatty acid oxidation differentially. Metabolism 53, 1158–1165.

    Article  CAS  Google Scholar 

  • Alstrup KK, Gregersen S, Jensen HM, Thomsen JL, Kjeld H (1999). Differential effects of cis and trans fatty acids on insulin release from isolated mouse islets. Metabolism 48, 22–29.

    Article  CAS  Google Scholar 

  • Bernal CA, Rovira J, Colandré ME, Cussó R, Cadefau JA (2006). Effects of dietary cis and trans unsaturated and saturated fatty acids on the glucose metabolites and enzymes of rats. Br J Nutr 95, 947–954.

    Article  CAS  Google Scholar 

  • Christiansen E, Schnider S, Palmvig B, Tauber-Lassen E, Pedersen O (1997). Intake of a diet high in trans monounsaturated fatty acids or saturated fatty acids. Effects on postprandial insulinemia and glycemia in obese patients with NIDDM. Diabetes Care 20, 881–887.

    Article  CAS  Google Scholar 

  • Colditz GA, Manson JE, Stampfer MJ, Rosner B, Willett WC, Speizer FE (1992). Diet and risk of clinical diabetes in women. Am J Clin Nutr 55, 1018–1023.

    Article  CAS  Google Scholar 

  • Cromer KD, Jenkins TC, Thies EJ (1995). Replacing cis octadecenoic acid with trans isomers in media containing rat adipocytes stimulates lipolysis and inhibits glucose utilization. J Nutr 125, 2394–2399.

    Article  CAS  Google Scholar 

  • Dorfman SE, Laurent D, Gounarides JS, Li X, Mullarkey TL, Rocheford EC et al. (2009). Metabolic implications of dietary trans-fatty acids. Obesity.

  • Esmaillzadeh A, Azadbakht L (2008). Consumption of hydrogenated versus nonhydrogenated vegetable oils and risk of insulin resistance and the metabolic syndrome among Iranian adult women. Diabetes Care 31, 223–226.

    Article  Google Scholar 

  • European Food Safety Authority (2004). Opinion of the scientific panel on the dietetic products, nutrition and allergies on a request from the commission related to the presence of trans fatty acids in foods and the effect on human health of the consumption of trans fatty acids. EFSA J 81, 1–49.

    Google Scholar 

  • Food Standards Australia New Zealand (2009). Intakes of trans fatty acids in New Zealand and Australia. Internet: http://www.foodstandards.gov.au/scienceandeducation/publications/transfattyacidsrepor4560.cfm.

  • Halton TL, Willett WC, Liu S, Manson JE, Stampfer MJ, Hu FB (2006). Potato and french fry consumption and risk of type 2 diabetes in women. Am J Clin Nutr 83, 284–290.

    Article  CAS  Google Scholar 

  • Health Canada (2006). Transforming the food supply, report of the trans fat task force. internet: http://www.hc-sc.gc.ca/fn-an/nutrition/gras-trans-fats/tf-ge/tf-gt_rep-rap-eng.php.

  • Hodge AM, English DR, O′Dea K, Sinclair AJ, Makrides M, Gibson RA et al. (2007). Plasma phospholipid and dietary fatty acids as predictors of type 2 diabetes: interpreting the role of linoleic acid. Am J Clin Nutr 86, 189–197.

    Article  CAS  Google Scholar 

  • Hu FB (2001). Diet and risk of type II diabetes: the role of types of fat and carbohydrate. Diabetologia 44, 805–817.

    Article  CAS  Google Scholar 

  • Huang Z, Wang B, Pace RD, Yoon S (2009). Trans fat intake lowers total cholesterol and high-density lipoprotein cholesterol levels without changing insulin sensitivity index in Wistar rats. Nutr Res 29, 206–212.

    Article  CAS  Google Scholar 

  • Ibrahim A, Natarajan S, Ghafoorunissa R (2005). Dietary trans-fatty acids alter adipocyte plasma membrane fatty acid composition and insulin sensitivity in rats. Metabolism 54, 240–246.

    Article  CAS  Google Scholar 

  • Kavanagh K, Jones KL, Sawyer J, Kelley K, Carr JJ, Wagner JD et al. (2007). Trans fat diet induces abdominal obesity and changes in insulin sensitivity in monkeys. Obesity 15, 1675–1684.

    Article  CAS  Google Scholar 

  • Koppe SWP, Elias M, Moseley RH, Green RM (2009). Trans fat feeding results in higher serum alanine aminotransferase and increased insulin resistance compared with a standard murine high-fat diet. Am J Physiol Gastrointest Liver Physiol 297, G378–G384.

    Article  CAS  Google Scholar 

  • Larque E, Gil-Campos M, Ramirez-Tortosa MC, Linde J, Canete R, Gil A (2006). Postprandial response of trans fatty acids in prepubertal obese children. Int J Obes 30, 1488–1493.

    Article  CAS  Google Scholar 

  • Lefevre M, Lovejoy JC, Smith SR, DeLany JP, Champagne C, Most MM et al. (2005). Comparison of the acute response to meals enriched with cis- or trans-fatty acids on glucose and lipids in overweight individuals with differing FABP2 genotypes. Metabolism 54, 1652–1658.

    Article  CAS  Google Scholar 

  • Lemaitre RN, King IB, Patterson RE, Psaty BM, Kestin M, Heckbert SR (1998). Assessment of trans-fatty acid intake with a food frequency questionnaire and validation with adipose tissue levels of trans-fatty acids. Am J Epidemiol 148, 1085–1093.

    Article  CAS  Google Scholar 

  • Lichtenstein A, Erkkilä A, Lamarche B, Schwab U, Jalbert S, Ausman L (2003). Influence of hydrogenated fat and butter on CVD risk factors: remnant-like particles, glucose and insulin, blood pressure and C-reactive protein. Atherosclerosis 171, 97–107.

    Article  CAS  Google Scholar 

  • Louheranta AM, Turpeinen AK, Vidgren HM, Schwab US, Uusitupa MIJ (1999). A high-trans fatty acid diet and insulin sensitivity in young healthy women. Metabolism 48, 870–875.

    Article  CAS  Google Scholar 

  • Lovejoy JC, Champagne CM, Smith SR, DeLany JP, Bray GA, Lefevre M et al. (2001). Relationship of dietary fat and serum cholesterol ester and phospholipid fatty acids to markers of insulin resistance in men and women with a range of glucose tolerance. Metabolism 50, 86–92.

    Article  CAS  Google Scholar 

  • Lovejoy JC, Smith SR, Champagne CM, Most MM, Lefevre M, DeLany JP et al (2002). Effects of diets enriched in saturated (palmitic), monounsaturated (oleic), or trans (elaidic) fatty acids on insulin sensitivity and substrate oxidation in healthy adults. Diabetes Care 25, 1283–1288.

    Article  CAS  Google Scholar 

  • Meyer KA, Kushi LH, Jacobs Jr DR, Folsom AR (2001). Dietary fat and incidence of type 2 diabetes in older Iowa women. Diabetes Care 24, 1528–1535.

    Article  CAS  Google Scholar 

  • Mozaffarian D, Clarke R (2009). Quantitative effects on cardiovascular risk factors and coronary heart disease risk of replacing partially hydrogenated vegetable oils with other fats and oils. Eur J Clin Nutr 63, S22–S33.

    Article  CAS  Google Scholar 

  • SACN (2002). A framework for evaluation of evidence that relates food and nutrients to health. Internet: http://www.sacn.gov.uk/pdfs/sacn_02_02a.pdf.

  • SACN (2007). Update on Trans Fatty Acids and Health. Position Statement by the Scientific Advisory Committee on Nutrition (SACN). HMSO: London.

  • Salmerón J, Hu FB, Manson JE, Stampfer MJ, Colditz GA, Rimm EB et al. (2001). Dietary fat intake and risk of type 2 diabetes in women. Am J Clin Nutr 73, 1019–1026.

    Article  Google Scholar 

  • Saravanan N, Haseeb A, Ehtesham NZ, Ghafoorunissa R (2005a). Differential effects of dietary saturated and trans-fatty acids on expression of genes associated with insulin sensitivity in rat adipose tissue. Eur J Endocrinol 153, 159–165.

    Article  CAS  Google Scholar 

  • Saravanan N, Ibrahim A, Ghafoorunissa R (2005b). Dietary trans fatty acids alter diaphragm phospholipid fatty acid composition, tryacylglycerol content and glucose transport in rats. Br J Nutr 93, 829–833.

    Article  Google Scholar 

  • Stein DT, Stevenson BE, Chester MW, Basit M, Daniels MB, Turley SD et al. (1997). The insulinotropic potency of fatty acids is influenced profoundly by their chain length and degree of saturation. J Clin Invest 100, 398–403.

    Article  CAS  Google Scholar 

  • Steyn NP, Mann J, Bennett PH, Temple N, Zimmet P, Tuomilehto J et al. (2004). Diet, nutrition and the prevention of type 2 diabetes. Public Health Nutr 7, 147–165.

    Article  CAS  Google Scholar 

  • Sundram K, Karupaiah T, Hayes KC (2007). Stearic acid-rich interesterified fat and trans-rich fat raise the LDL/HDL ratio and plasma glucose relative to palm olein in humans. Nutr Metabol 4, 3.

    Article  Google Scholar 

  • Tardy A-L, Giraudet C, Rousset P, Rigaudiere J-P, Laillet B, Chalancon S et al. (2008). Effects of trans MUFA from dairy and industrial sources on muscle mitochondrial function and insulin sensitivity. J Lipid Res 49, 1445–1455.

    Article  CAS  Google Scholar 

  • Tardy A-L, Lambert-Porcheron S, Malpuech-Brugere C, Giraudet C, Rigaudiere J-P, Laillet B et al. (2009). Dairy and industrial sources of trans fat do not impair peripheral insulin sensitivity in overweight women. Am J Clin Nutr 90, 88–94.

    Article  CAS  Google Scholar 

  • Tholstrup T, Raff M, Basu S, Nonboe P, Sejrsen K, Straarup EM (2006). Effects of butter high in ruminant trans and monounsaturated fatty acids on lipoproteins, incorporation of fatty acids into lipid classes, plasma C-reactive protein, oxidative stress, hemostatic variables, and insulin in healthy young men. Am J Clin Nutr 83, 237–243.

    Article  CAS  Google Scholar 

  • van Dam RM, Willett WC, Rimm EB, Stampfer MJ, Hu FB (2002). Dietary fat and meat intake in relation to risk of type 2 diabetes in men. Diabetes Care 25, 417–424.

    Article  Google Scholar 

  • van de Vijver LPL, Kardinaal AFM, Couet C, Aro A, Kafatos A, Steingrimsdottir L et al. (2000). Association between trans fatty acid intake and cardiovascular risk factors in Europe: the TRANSFAIR study. Eur J Clin Nutr 54, 126–135.

    Article  CAS  Google Scholar 

  • Vega-Lopez S, Ausman LM, Jalbert SM, Erkkila AT, Lichtenstein AH (2006). Palm and partially hydrogenated soybean oils adversely alter lipoprotein profiles compared with soybean and canola oils in moderately hyperlipidemic subjects. Am J Clin Nutr 84, 54–62.

    Article  CAS  Google Scholar 

  • Wang Y, Jacome-Sosa MM, Ruth MR, Goruk SD, Reaney MJ, Glimm DR et al (2009). Trans-11 vaccenic acid reduces hepatic lipogenesis and chylomicron secretion in JCR:LA-cp rats. J Nutr 139, 2049–2054.

    Article  CAS  Google Scholar 

  • Wang Y, Lu J, Ruth MR, Goruk SD, Reaney MJ, Glimm DR et al. (2008). Trans-11 vaccenic acid dietary supplementation induces hypolipidemic effects in JCR:LA-cp rats. J Nutr 138, 2117–2122.

    Article  CAS  Google Scholar 

  • Wild S, Roglic G, Green A, Sicree R, King H (2004). Global prevalence of diabetes. Diabetes Care 27, 1047–1053.

    Article  Google Scholar 

  • Xu J, Eilat-Adar S, Loria CM, Howard BV, Fabsitz RR, Begum M et al. (2007). Macronutrient intake and glycemic control in a population-based sample of American Indians with diabetes: the Strong Heart Study. Am J Clin Nutr 86, 480–487.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Food Standards Agency (UK) for providing funding. Funding for Update on trans fatty acids and health provided by Food Standards Agency (UK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A K Thompson.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, A., Minihane, AM. & Williams, C. Trans fatty acids, insulin resistance and diabetes. Eur J Clin Nutr 65, 553–564 (2011). https://doi.org/10.1038/ejcn.2010.240

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ejcn.2010.240

Keywords

This article is cited by

Search

Quick links