Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Bioavailability of zinc from NutriSet zinc tablets compared with aqueous zinc sulfate

Abstract

Background/Objectives:

The apparent widespread extent of zinc (Zn) deficiency in developing countries and the efficacy of oral Zn supplements as an adjunct to oral rehydration therapy make oral Zn supplementation an increasingly important modality in clinical medicine and public health. In this study we aimed to compare the relative bioavailability of oral doses of 30 mg of Zn in two dosing forms

Subjects/Methods:

In total, 10 healthy male volunteers ingested oral Zn doses with 200 ml plain water at about 0830 hours in the fasting state on two occasions, once as 30 mg of Zn in an aqueous solution of reagent grade zinc sulfate (ZnSO4) and another time as 1.5 NutriSet Zn tablets (Nutriset, Malaunay, France); on a third occasion, only plain water was consumed. Venous blood specimens were collected at baseline, 60, 120, 180 and 240 min after ingestion and the plasma Zn was measured for each sample.

Results:

The relative bioavailability of oral Zn from a commonly used, tableted (NutriSet) form is only about half of that of a reference dose of aqueous ZnSO4 as indicated by the area under the curve of serial plasma Zn excursion and maximal change in circulating Zn.

Conclusions:

Reduced or absent functional outcomes in Zn intervention trials may derive, in part, from a lower than anticipated intestinal uptake of the Zn in the tableted form.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  • Abu-Hamdan DK, Mahajan SK, Migdal SD, Prasad AS, McDonald FD (1986). Zinc tolerance test in uremia. Effect of ferrous sulfate and aluminum hydroxide. Ann Intern Med 104, 50–52.

    Article  CAS  PubMed  Google Scholar 

  • Abu-Hamdan DK, Mahajan SK, Migdal S, Prasad AS, McDonald FD (1988). Zinc tolerance test in uremia: effect of calcitriol supplementation. J Am Coll Nutr 7, 235–240.

    Article  CAS  PubMed  Google Scholar 

  • Baqui AH, Black RE, El Arifeen S, Yunus M, Chakraborty J, Ahmed S et al. (2002). Effect of zinc supplementation started during diarrhoea on morbidity and mortality in Bangladeshi children: community randomised trial. BMJ 325, 1059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baqui AH, Zaman K, Persson LA, El Arifeen S, Yunus M, Begum N et al. (2003). Simultaneous weekly supplementation of iron and zinc is associated with lower morbidity due to diarrhea and acute lower respiratory infection in Bangladeshi infants. J Nutr 133, 4150–4157.

    Article  CAS  PubMed  Google Scholar 

  • Bhandari N, Mazumder S, Taneja S, Dube B, Agarwal RC, Mahalanabis D et al. (2008). Effectiveness of zinc supplementation plus oral rehydration salts compared with oral rehydration salts alone as a treatment for acute diarrhea in a primary care setting: a cluster randomized trial. Pediatrics 121, e1279–e1285.

    Article  PubMed  Google Scholar 

  • Boosalis MG, Evans GW, McClain CJ (1983). Impaired handling of orally administered zinc in pancreatic insufficiency. Am J Clin Nutr 37, 268–271.

    Article  CAS  PubMed  Google Scholar 

  • Brown KH, López de Romaña D, Arsenault JE, Peerson JM, Penny ME (2007). Comparison of the effects of zinc delivered in a fortified food or a liquid supplement on the growth, morbidity, and plasma zinc concentrations of young Peruvian children. Am J Clin Nutr 85, 538–547.

    Article  CAS  PubMed  Google Scholar 

  • Brown KH, Peerson JM, Allen LH (1998). Effect of zinc supplementation on children's growth: a meta-analysis of intervention trials. Bibl Nutr Dieta 54, 76–83.

    CAS  Google Scholar 

  • Brown KH, Peerson JM, Rivera J, Allen LH (2002). Effect of supplemental zinc on the growth and serum zinc concentrations of prepubertal children: a meta-analysis of randomized controlled trials. Am J Clin Nutr 75, 1062–1071.

    Article  CAS  PubMed  Google Scholar 

  • Capel ID, Spencer EP, Daivies AE, Levitt HN (1982). The assessment of zinc status by the zinc tolerance test in various groups of patients. Clin Biochem 15, 257–260.

    Article  CAS  PubMed  Google Scholar 

  • Castillo-Duran C, Solomons NW (1991a). Studies on the bioavailability of zinc in humans. VIII. Plasma-zinc responses in cooked beef. Nutr Res 22, 419–427.

    Article  Google Scholar 

  • Castillo-Duran C, Solomons NW (1991b). Studies on the bioavailability of zinc in humans. IX. Interaction of beef-zinc with iron, calcium and lactose. Nutr Res 22, 429–438.

    Article  Google Scholar 

  • Fontaine O (2001). Effect of zinc supplementation on clinical course of acute diarrhoea. J Health Popul Nutr 19, 339–346.

    CAS  PubMed  Google Scholar 

  • Hambidge KM, Krebs NF, Miller L (1998). Evaluation of zinc metabolism with use of stable-isotope techniques: implications for the assessment of zinc status. Am J Clin Nutr 68 (Suppl 2), 410S–413S.

    Article  CAS  PubMed  Google Scholar 

  • Hess SY, Lönnerdal B, Hotz C, Rivera JA, Brown KH (2009). Recent advances in knowledge of zinc nutrition and human health. Food Nutr Bull 30 (Suppl 1), S5–S11.

    Article  PubMed  Google Scholar 

  • International Zinc Nutrition Consultative Group (IZiNCG), Brown KH, Rivera JA, Bhutta Z, Gibson RS, King JC, Lönnerdal B et al. (2004). International Zinc Nutrition Consultative Group (IZiNCG) technical document. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr Bull 25 (1 Suppl 2), S99–S203.

    Google Scholar 

  • King CK, Glass R, Bresee JS, Duggan C, Centers for Disease Control and Prevention (2003). Managing acute gastroenteritis among children: oral rehydration, maintenance, and nutritional therapy. MMWR Recomm Rep 52 (RR-16), 1–16.

    PubMed  Google Scholar 

  • King JC, Raynolds WL, Margen S (1978). Absorption of stable isotopes of iron, copper, and zinc during oral contraceptives use. Am J Clin Nutr 31, 1198–1203.

    Article  CAS  PubMed  Google Scholar 

  • Kraushaar H, Hambidge KM, Krebs NF, Westcott JE, Lei S, Tran CD et al. (2008). Zinc (Zn) absorption from a dispersible zinc sulfate tablet. FASEB J 22, 749.

    Google Scholar 

  • Lazzerini M, Ronfani L (2008). Oral zinc for treating diarrhoea in children. Cochrane Database Syst Rev (3), CD005436.

  • Mazariegos M, Hambidge KM, Westcott JE, Solomons NW, Raboy V, Das A et al. (2010). Neither a zinc supplement nor phytate-reduced maize nor their combination enhance growth of 6 to 12-month old Guatemalan infants. J Nutr 140, 1041–1048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oelshlegel Jr FJ, Brewer GJ (1977). Absorption of pharmacologic doses of zinc. Prog Clin Biol Res 14, 299–316.

    CAS  PubMed  Google Scholar 

  • Prasad AS, Miale Jr A, Farid Z, Sandstead HH, Schulert AR (1963). Zinc metabolism in patients with the syndrome of iron deficiency anemia, hepatosplenomegaly, dwarfism, and hypognadism. J Lab Clin Med 61, 537–549.

    CAS  PubMed  Google Scholar 

  • Ramakrishnan U, Nguyen P, Martorell R (2009). Effects of micronutrients on growth of children under 5 y of age: meta-analyses of single and multiple nutrient interventions. Am J Clin Nutr 89, 191–203.

    Article  CAS  PubMed  Google Scholar 

  • Rivera J (2007). Comments to the tipping point discussion on zinc and child mortality. Invited discussion. Report of the first meeting of the micronutrient forum, April 16–18, 2007, Istanbul, Turkey. Sight and Life Magazine (3), 27.

  • Rosado JL, Cassís L, Solano L, Duarte-Vázquez MA (2005). Nutrient addition to corn masa flour: effect on corn flour stability, nutrient loss, and acceptability of fortified corn tortillas. Food Nutr Bull 26, 266–272.

    Article  PubMed  Google Scholar 

  • Sazawal S, Black RE, Ramsan M, Chwaya HM, Dutta A, Dhingra U et al. (2007). Effect of zinc supplementation on mortality in children aged 1–48 months: a community-based randomised placebo-controlled trial. Lancet 369, 927–934.

    Article  CAS  PubMed  Google Scholar 

  • Schaeken MJ, van der Hoeven JS, Saxton CA, Cummins D (1994). The effect of mouth rinses containing zinc and triclosan on plaque accumulation and development of gingivitis in a 3-week clinical test. J Clin Periodontol 21, 360–364.

    Article  CAS  PubMed  Google Scholar 

  • Schaeken MJ, Van der Hoeven JS, Saxton CA, Cummins D (1996). The effect of mouth rinses containing zinc and triclosan on plaque accumulation, development of gingivitis and formation of calculus in a 28-week clinical test. J Clin Periodontol 23, 465–470.

    Article  CAS  PubMed  Google Scholar 

  • Solis-Herruzo J, De Cuenca B, Muñoz-Rivero MC (1989). Intestinal zinc absorption in cirrhotic patients. Z Gastroenterol 27, 335–338.

    CAS  PubMed  Google Scholar 

  • Solomons NW, Jacob RA, Pineda O, Viteri F (1979a). Studies on the bioavailability of zinc in man. II. Absorption of zinc from organic and inorganic sources. J Lab Clin Med 94, 335–343.

    CAS  PubMed  Google Scholar 

  • Solomons NW, Jacob RA, Pineda O, Viteri FE (1979b). Studies on the bioavailability of zinc in man. Effects of the Guatemalan rural diet and of the iron-fortifying agent, NaFeEDTA. J Nutr 109, 1519–1528.

    Article  CAS  PubMed  Google Scholar 

  • Solomons NW, Jacob RA, Pineda O, Viteri FE (1979c). Studies on the bioavailability of zinc in man. III. Effects of ascorbic acid on zinc absorption. Am J Clin Nutr 32, 2495–2499.

    Article  CAS  PubMed  Google Scholar 

  • Solomons NW, Jacob RA (1981). Studies on the bioavailability of zinc in humans: effects of heme and nonheme iron on the absorption of zinc. Am J Clin Nutr 34, 475–482.

    Article  CAS  PubMed  Google Scholar 

  • Solomons NW, Marchini JS, Duarte-Favaro RM, Vannuchi H, Dutra de Oliveira JE (1983a). Studies on the bioavailability of zinc in humans: intestinal interaction of tin and zinc. Am J Clin Nutr 37, 566–571.

    Article  CAS  PubMed  Google Scholar 

  • Solomons NW, Pineda O, Viteri F, Sandstead HH (1983b). Studies on the bioavailability of zinc in humans: mechanism of the intestinal interaction of nonheme iron and zinc. J Nutr 113, 337–349.

    Article  CAS  PubMed  Google Scholar 

  • Sturniolo GC, Martin A, Gurrieri G, Naccarato R (1983). The effects of prostaglandin synthetase inhibition on the oral zinc tolerance test in man. Gastroenterol Clin Biol 7, 933.

    CAS  PubMed  Google Scholar 

  • Tielsch JM, Khatry SK, Stoltzfus RJ, Katz J, LeClerq SC, Adhikari R et al. (2007). Effect of daily zinc supplementation on child mortality in southern Nepal: a community-based, cluster randomised, placebo-controlled trial. Lancet 370, 1230–1239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran CD, Miller LV, Krebs NF, Lei S, Hambidge KM (2004). Zinc absorption as a function of the dose of zinc sulfate in aqueous solution. Am J Clin Nutr 80, 1570–1573.

    Article  CAS  PubMed  Google Scholar 

  • Turnlund JR, Michel MC, Keyes WR, King JC, Margen S (1982). Use of enriched stable isotopes to determine zinc and iron absorption in elderly men. Am J Clin Nutr 35, 1033–1040.

    Article  CAS  PubMed  Google Scholar 

  • Valberg LS, Flanagan PR, Brennan J, Chamberlain MJ (1985). Does the oral zinc tolerance test measure zinc absorption? Am J Clin Nutr 41, 37–42.

    Article  CAS  PubMed  Google Scholar 

  • Wallock LM, King JC, Hambidge KM, English-Westcott JE, Pritts J (1993). Meal-induced changes in plasma, erythrocyte, and urinary zinc concentrations in adult women. Am J Clin Nutr 58, 695–701.

    Article  CAS  PubMed  Google Scholar 

  • WHO (2004). Clinical management of acute diarrhoea′: WHO/UNICEF joint statement. WHO: Geneva.

Download references

Acknowledgements

We thank Dr Brenda Barahona and Mr Carlos Tanchez for their assistance with the recruiting of subjects and the conduct of the clinical absorption tests. We thank Dr Olivier Fountain of the World Health Organization for provision of the zinc tablets used in the study. We are indebted to Dr Marieke Vossenaar for her statistical and manuscript management assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N W Solomons.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Contributors: NWS and KS conceived and designed the study. MERA recruited the subjects, conducted the metabolic studies and collected and processed the samples. GW and BM contributed assays from their laboratories. All authors contributed to the development of the final manuscript. Funding was provided by the Hildegard Grunow Foundation of Munich, Germany. The NutriSet tablets were provided by the World Health Organization in Geneva, Switzerland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solomons, N., Romero-Abal, ME., Weiss, G. et al. Bioavailability of zinc from NutriSet zinc tablets compared with aqueous zinc sulfate. Eur J Clin Nutr 65, 125–131 (2011). https://doi.org/10.1038/ejcn.2010.198

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ejcn.2010.198

Keywords

This article is cited by

Search

Quick links