Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Postprandial hyperglycemia and insulin response are affected by sea buckthorn (Hippophaë rhamnoides ssp. turkestanica) berry and its ethanol-soluble metabolites



Repeated postprandial hyperglycemia and subsequent mild, late hypoglycemia as well as high postprandial insulin response lead to metabolic events that may eventually develop into type 2 diabetes. The aim of this study was to assess how sea buckthorn berries as well as two sea buckthorn extraction residues modulate the postprandial metabolism after a high-glucose meal.


Ten healthy normal-weight male volunteers consumed four study breakfasts, one control (A) and three sea buckthorn meals on four distinct study days. All the meals contained yoghurt and glucose (50 g). The sea buckthorn ingredients used were dried and crushed whole berries (meal B1), supercritical fluid (SF)-carbon dioxide (CO2)-extracted oil-free berries (meal B2) or ethanol-extracted SF-CO2-extraction residue (meal B3). Blood samples for glucose, insulin and tumor necrosis factor-α analyses were collected before and during the 6-h study period.


Meal B1 suppressed the postprandial peak insulin response when compared with meal A (Δconcentration of 30-min peak value −21.8 mU/l, P=0.039), and stabilized postprandial hyperglycemia and subsequent hypoglycemia (Δconcentration of 30-min peak value—120-min value −30.4 mU/l, P=0.036). Furthermore, meal B2 resulted in a more stable insulin response than the control meal (Δconcentration of 30-min peak value—120-min value −25.9 mU/l, P=0.037).


Removal of the CO2-soluble oil component from the berries did not show a significant change in the studied postprandial effects of the berries. The EtOH soluble components, again showed advantageous properties in both insulin and glucose responses.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3


  • Basu M, Prasad R, Jatamurthy P, Pal K, Arumughan C, Sawhney R (2007). Anti-atherogenic effects of seabuckthorn (Hippophaë rhamnoides) seed oil. Phytomed 14, 770–777.

    Article  CAS  Google Scholar 

  • Brand-Miller J, Holt S, Pawlak D, McMillan J (2002). Glycemic index and obesity. Am J Clin Nutr 76, 281S–285S.

    Article  CAS  Google Scholar 

  • Ceriello A, Esposito K, Piconi L, Ihnat M, Thorpe J, Testa R et al. (2008). Glucose ‘peak’ and glucose ‘spike’: impact on endothelial function and oxidative stress. Diabetes Res Clin Pract 82, 262–267.

    Article  CAS  Google Scholar 

  • Dandona P, Aljada A, Chaudhuri A, Mohanty P, Garg R (2005). Metabolic syndrome: a comprehensive perspective based on interactions between obesity, diabetes, and inflammation. Circul 111, 1448–1454.

    Article  Google Scholar 

  • DeFuria J, Bennett G, Strissel K, Perfield J, Milbury P, Greenberg A et al. (2009). Dietary blueberry attenuates whole-body insulin resistance in high fat-fed mice by reducing adipocyte death and its inflammatory sequelae. J Nutr 139, 1510–1516.

    Article  CAS  Google Scholar 

  • Eccleston C, Yang B, Tahvonen R, Kallio H, Rimbach G, Minihane A (2002). Effects of an antioxidant-rich juice (sea buckthorn) on risk factors for coronary heart disease in humans. J Nutr Biochem 13, 346–354.

    Article  CAS  Google Scholar 

  • Evans J, Goldfine I, Maddux B, Grodsky G (2002). Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev 23, 599–622.

    Article  CAS  Google Scholar 

  • Evans J, Goldfine I, Maddux B, Grodsky G (2003). Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes 52, 1–8.

    Article  CAS  Google Scholar 

  • Ginsberg H, Illingworth R (2001). Postprandial dyslipidemia: an atherogenic disorder common in patients with diabetes mellitus. Am J Cardiol 88, 9–15.

    Article  Google Scholar 

  • Gruendel S, Otto B, Garcia AL, Wagner K, Mueller C, Weickert MO et al. (2007). Carob pulp preparation rich in insoluble dietary fibre and polyphenols increases plasma glucose and serum insulin responses in combination with a glucose load in humans. Br J Nutr 98, 101–105.

    Article  CAS  Google Scholar 

  • Hanamura T, Mayama C, Aoki H, Hirayama Y, Shimizu M (2006). Antihyperglycemic effect of polyphenols from acerola (Malpighia emarginata DC.) fruit. Biosci Biotech Biochem 70, 1813–1820.

    Article  CAS  Google Scholar 

  • Hlebowicz J, Darwiche G, Bjrgell O, Almér L (2007). Effect of cinnamon on postprandial blood glucose, gastric emptying, and satiety in healthy subjects. Am J Clin Nutr 85, 1552–1556.

    Article  CAS  Google Scholar 

  • Hotamisligil G, Shargill N, Spiegelman B (1993). Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259, 87–91.

    Article  CAS  Google Scholar 

  • Johansson A, Korte H, Yang B, Stanley J, Kallio H (2000). Sea buckthorn berry oil inhibits platelet aggregation. J Nutr Biochem 11, 491–495.

    Article  CAS  Google Scholar 

  • Kallio H, Lassila M, Järvenpää E, Haraldsson G, Jonsdottir S, Yang B (2009). Inositols and methylinositols in sea buckthorn (Hippophaë rhamnoides) berries. J Chrom B 877, 1426–1432.

    Article  CAS  Google Scholar 

  • Kallio H, Yang B, Peippo P, Tahvonen R, Pan R (2002). Triacylglycerols, glycerophospholipids, tocopherols, and tocotrienols in berries and seeds of two subspecies (ssp sinensis and mongolica) of sea buckthorn (Hippophae rhamnoides). J Agric Food Chem 50, 3004–3009.

    Article  CAS  Google Scholar 

  • Kallio P, Kolehmainen M, Laaksonen DE, Pulkkinen L, Atalay M, Mykkänen H et al. (2008). Inflammation markers are modulated by responses to diets differing in postprandial insulin responses in individuals with the metabolic syndrome. Am J Clin Nutr 87, 1497–1503.

    Article  CAS  Google Scholar 

  • Krogh-Madsen R, Møller K, Dela F, Kronborg G, Jauffred S, Pedersen B (2004). Effect of hyperglycemia and hyperinsulinemia on the response of IL-6, TNF-alpha, and FFAs to low-dose endotoxemia in humans. Am J Physiol Endocrinol Metab 286, E766–E772.

    Article  CAS  Google Scholar 

  • Lairon D, Williams C, Lopez-Miranda J (2007). Dietary, physiological, genetic and pathological influences on postprandial lipid metabolism. Br J Nutr 98, 458–473.

    Article  Google Scholar 

  • Larmo P, Alin J, Salminen E, Kallio H, Tahvonen R (2007). Effects of sea buckthorn berries on infections and inflammation: a double-blind, randomized, placebo-controlled trial. Eur J Clin Nutr 62, 1123–1130.

    Article  Google Scholar 

  • Lehtonen HM, Lehtinen O, Suomela JP, Viitanen M, Kallio H (2010a). Flavonol glycosides of sea buckthorn (Hippophaë rhamnoides ssp. sinensis) and lingonberry (Vaccinium vitis-idaea) are bioavailable in humans and monoglucuronidated for excretion. J Agric Food Chem 58, 620–627.

    Article  CAS  Google Scholar 

  • Lehtonen HM, Suomela JP, Tahvonen R, Vaarno J, Venojärvi M, Viikari J et al. (2010b). Berry meals and risk factors associated with metabolic syndrome. Eur J Clin Nutr 64, 614 .

    Article  CAS  Google Scholar 

  • Ludwig D (2000). Dietary glycemic index and obesity. J Nutr 130, 280S–283S.

    Article  CAS  Google Scholar 

  • Ludwig D (2002). The glycemic index: physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. JAMA 287, 2414–2423.

    Article  CAS  Google Scholar 

  • Ludwig D, Majzoub J, Al Zahrani A, Dallal G, Blanco I, Roberts S (1999). High glycemic index foods, overeating, and obesity. Pediatr 103, E26–E31.

    Article  CAS  Google Scholar 

  • Määttä-Riihinen KR, Kamal-Eldin A, Mattila PH, González-Paramás AM, Törrönen AR (2004). Distribution and contents of phenolic compounds in eighteen Scandinavian berry species. J Agric Food Chem 52, 4477–4486.

    Article  Google Scholar 

  • McCarty M (2005). Low-insulin-response diets may decrease plasma C-reactive protein by influencing adipocyte function. Med Hypot 64, 385–387.

    Article  CAS  Google Scholar 

  • Nemes-Nagy E, Szocs-Molnár T, Dunca I, Balogh-Sămărghiţan V, Hobai S, Morar R et al. (2008). Effect of a dietary supplement containing blueberry and sea buckthorn concentrate on antioxidant capacity in type 1 diabetic children. Acta Physiol Hung 95, 383–393.

    Article  CAS  Google Scholar 

  • Ruge T, Lockton J, Renstrom F, Lystig T, Sukonina V, Svensson M et al. (2009). Acute hyperinsulinemia raises plasma interleukin-6 in both nondiabetic and type 2 diabetes mellitus subjects, and this effect is inversely associated with body mass index. Metabol Clin Exp 58, 860–866.

    Article  CAS  Google Scholar 

  • Sandell M, Laaksonen O, Järvinen R, Rostiala N, Pohjanheimo T, Tiitinen K et al. (2009). Orosensory profiles and chemical composition of black currant (Ribes nigrum) juice and fractions of press residue. J Agric Food Chem 57, 3718–3728.

    Article  CAS  Google Scholar 

  • Sholeson S, Lee J, Goldfine A (2006). Inflammation and insulin resistance. J Clin Invest 116, 1793–1801.

    Article  Google Scholar 

  • Suleyman H, Gumustekin K, Taysi S, Keles S, Oztasan N, Aktas O et al. (2002). Beneficial effects of Hippophaë rhamnoides L. on nicotine induced oxidative stress in rat blood compared with vitamin E. Biol Pharmac Bull 25, 1133–1136.

    Article  CAS  Google Scholar 

  • Suomela JP, Ahotupa M, Yang B, Vasankari T, Kallio H (2006). Absorption of flavonols derived from sea buckthorn (Hippophaë rhamoides L.) and their effect on emerging risk factors for cardiovascular disease in humans. J Agric Food Chem 54, 7364–7369.

    Article  CAS  Google Scholar 

  • Tiitinen KM, Yang B, Haraldsson GG, Jonsdottir S, Kallio H (2006). Fast analysis of sugars, fruit acids, and vitamin C in sea buckthorn (Hippophaë rhamnoides L.) varieties. J Agric Food Chem 54, 2508–2513.

    Article  CAS  Google Scholar 

  • Törrönen R, Sarkkinen E, Tapola N, Hautaniemi E, Kilpi K, Niskanen L (2009). Berries modify the postprandial plasma glucose response to sucrose in healthy subjects. Br J Nutr 24, 1–4.

    Article  Google Scholar 

  • Wolever T, Bentum-Williams A, Jenkins D (1995). Physiological modulation of plasma free fatty acids concentrations by diet: metabolic implications in nondiabetic subjects. Diabetes Care 18, 962–970.

    Article  CAS  Google Scholar 

  • Yang B, Halttunen T, Raimo O, Price K, Kallio H (2009). Flavonol glycosides in wild and cultivated berries of three major subspecies of Hippophaë rhamnoides and changes during harvesting period. Food Chem 115, 657–664.

    Article  CAS  Google Scholar 

  • Zheng J, Yang B, Tuomasjukka S, Ou S, Kallio H (2009). Effects of latitude and weather conditions on contents of sugars, fruit acids, and ascorbic acid in black currant (Ribes nigrum L.) juice. J Agric Food Chem 57, 2977–2987.

    Article  CAS  Google Scholar 

  • Zunino S (2009). Type 2 diabetes and glycemic response to grapes or grape products. J Nutr 139, 1794S–1800S.

    Article  CAS  Google Scholar 

Download references


The study was performed as part of LUMABS-project funded by ABS graduate school, Finnish Food and Drink Industries’ Federation (ETL), Turku University Foundation and Raisio Oyj Reseach Foundation. We thank Katja Tanner, Hannele Jokioinen, Jie Zheng, Salla Palmu and Eveliina Upmeier for skilful technical assistance, the group of Mika Venojärvi from Turku University of Applied Sciences for carrying out the TNF-α analyses, and Aromtech Ltd for providing the SC-CO2-extraction. This study was supported by ABS graduate school, Finnish Food and Drink Industries’ Federation (ETL), Turku University Foundation and Raisio Oyj Reseach Foundation.

Author information

Authors and Affiliations


Corresponding author

Correspondence to H-M Lehtonen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Author Contributions: H-M Lehtonen, R Järvinen, M Viitanen, H Alanko and H Kallio designed research, H-M Lehtonen, R Järvinen and K Linderborg conducted research, H-M Lehtonen performed statistical analysis, H-M Lehtonen, R Järvinen, M Viitanen, K Linderborg and H Kallio wrote paper, and H-M Lehtonen had primary responsibility for final content. All authors read and approved the final paper.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lehtonen, HM., Järvinen, R., Linderborg, K. et al. Postprandial hyperglycemia and insulin response are affected by sea buckthorn (Hippophaë rhamnoides ssp. turkestanica) berry and its ethanol-soluble metabolites. Eur J Clin Nutr 64, 1465–1471 (2010).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • glycemia
  • insulinemia
  • postprandial state
  • sea buckthorn

This article is cited by


Quick links