Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Effects of margarines and butter consumption on lipid profiles, inflammation markers and lipid transfer to HDL particles in free-living subjects with the metabolic syndrome

Abstract

Objective:

Our purpose was to examine the effects of daily servings of butter, no-trans-fat margarine and plant sterol margarine, within recommended amounts, on plasma lipids, apolipoproteins (Apos), biomarkers of inflammation and endothelial dysfunction, and on the transfer of lipids to HDL particles in free-living subjects with the metabolic syndrome.

Methods:

This was a randomized, single-blind study where 53 metabolic syndrome subjects (62% women, mean age 54 years) received isocaloric servings of butter, no-trans-fat margarine or plant sterol margarine in addition to their usual diets for 5 weeks. The main outcome measures were plasma lipids, Apo, inflammatory and endothelial dysfunction markers (CRP, IL-6, CD40L or E-selectin), small dense LDL cholesterol concentrations and in vitro radioactive lipid transfer from cholesterol-rich emulsions to HDL. Difference among groups was evaluated by analysis of variance.

Results:

There was a significant reduction in Apo-B (−10.4 %, P=0.043) and in the Apo-B/Apo-A-1 ratio (−11.1%, P=0.034) with plant sterol margarine. No changes in plasma lipids were noticed with butter and no-trans-fat margarine. Transfer rates of lipids to HDL were reduced in the no-trans-fat margarine group: triglycerides −42.0%, (P<0.001 vs butter and sterol margarine) and free cholesterol −16.2% (P=0.006 vs sterol margarine). No significant effects were noted on the concentrations of inflammatory and endothelial dysfunction markers among the groups.

Conclusions:

In free-living subjects with the metabolic syndrome consumption of plant sterol and no-trans-fat margarines within recommended amounts reduced, respectively, Apo-B concentrations and the ability of HDL to accept lipids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  • Ai M, Otokozawa S, Astalos BF, Nakajima K, Stein E, Jones PH et al. (2008). Effects of maximal doses of atorvastatin versus rosuvastatin on small dense low-density lipoprotein cholesterol levels. Am J Cardiol 101, 315–318.

    Article  CAS  PubMed  Google Scholar 

  • Association of Official Analytical Chemists (AOAC) (2002). Official Methods of Analysis., Official Method. n. 996.06, cap 41 AOAC: Arilington., pp 20.

  • Asztalos BF, Schaefer EJ (2003). High-density lipoprotein subpopulations in pathologic conditions. Am J Cardiol 91, 12E–17E.

    Article  CAS  PubMed  Google Scholar 

  • Calder PC (1998). Fat chance immunomodulation. Immunol Today 19, 244–247.

    Article  CAS  PubMed  Google Scholar 

  • Campos H, Blijlevens E, McNamara JR, Ordovas JM, Posner BM, Wilson PW et al. (1992). LDL particle size distribution. Results from the Framingham Offspring Study. Arterioscler Thromb Vasc Biol 12, 1410–1419.

    Article  CAS  Google Scholar 

  • Cohn JS, McNamara JR, Cohn SD, Ordovas JM, Schaefer EJ (1988). Postprandial plasma lipoprotein changes in human subjects of different ages. J Lipid Res 29, 469–479.

    CAS  PubMed  Google Scholar 

  • Daminelli EM, Spada C, Treitinger A, Oliveira TV, Latrilha MC, Maranhão RC (2008). Alterations in lipid transfer to high-density lipoprotein (HDL) and activity of paraoxonase-1 in HIV+ patients. Rev Inst Med Trop S Paulo 50, 223–227.

    Article  PubMed  Google Scholar 

  • Dandona P, Aljada A, Chaudhuri A, Mohanty P, Garg R (2005). Metabolic syndrome: a comprehensive perspective based on interactions between obesity, diabetes, and inflammation. Circulation 111, 1448–1454.

    Article  PubMed  Google Scholar 

  • Dayton S, Pearce ML, Goldman H, Harnish A, Plotkin D, Shickman M et al. (1968). Controlled trial of diet high in unsaturated fat for prevention of atherosclerosis complications. Lancet 2, 1060–1062.

    Article  CAS  PubMed  Google Scholar 

  • Demonty I, Ras RT, van der Knaap HCM, Duchateau GSMJ, Meijer L, Zock PL et al. (2009). Continuous dose–response relationship of the LDL cholesterol-lowering effect of plant sterol intake. J Nutr 139, 271–284.

    Article  CAS  PubMed  Google Scholar 

  • Eckel RH, Grundy SM, Zimmet PZ (2005). The metabolic syndrome. Lancet 365, 1415–1428.

    Article  CAS  PubMed  Google Scholar 

  • Gigleux I, Jenkins DJ, Kendall CW, Marchie A, Faulkner DA, Wong JM et al. (2007). Comparison of a dietary portfolio diet of cholesterol-lowering foods and a statin on LDL particle size phenotype in hypercholesterolaemic participants. Br J Nutr 98, 1229–1236.

    Article  CAS  PubMed  Google Scholar 

  • Giribela AH, Melo NR, Latrilha MC, Baracat EC, Maranhão RC (2009). HDL concentration, lipid transfer to HDL, and HDL size in normolipidemic nonobese menopausal women. Int J Gynecol Obstet 104, 117–120.

    Article  CAS  Google Scholar 

  • Grundy SM (2008). Metabolic syndrome pandemic. Arterioscler Thromb Vasc Biol 28, 629–636.

    Article  CAS  PubMed  Google Scholar 

  • US Department of Health and Human Services, Food and Drug Administration, Center of Drug Evaluation and Research (CDER) and center for Veterinary Medicine (CVM). Guidance for industry—Bioanalytical method validation. Acessed on the wide world web http://www.fda.gov/cder/guidance/index.htm.

  • Han SH, Leka LS, Lichtenstein AH, Ausman LM, Schaefer EJ, Meydani SN (2002). Effect of hydrogenated and saturated, relative to polyunsaturated, fat on immune and inflammatory responses of adults with moderate hypercholesterolemia. J Lipid Res 43, 445–452.

    CAS  PubMed  Google Scholar 

  • Katan MB, Grundy SM, Jones P, Law M, Miettinen T, Paoletti R (2003). Efficacy and safety of plant stanols and sterols in the management of blood cholesterol levels. Mayo Clin Proc 78, 965–978.

    Article  CAS  PubMed  Google Scholar 

  • Kontush A, Chapman MJ (2008). Why is HDL functionally deficient in type 2 diabetes? Curr Diab Rep 8, 51–59.

    Article  CAS  PubMed  Google Scholar 

  • Kromhout D, Bosschieter EB, De Lezenne Coulander C (1985). The inverse relation fish consumption and 20-year mortality from coronary heart disease. N Engl J Med 312, 1205–1211.

    Article  CAS  PubMed  Google Scholar 

  • Kromhout D, De Lezenne, Coulander C (1984). Diet, prevalence and 10-year mortality from coronary heart disease in 871 middle-aged men. The Zutphen Study. Am J Epidemiol 119, 733–743.

    Article  CAS  PubMed  Google Scholar 

  • Lamarche B, Desroches S, Jenkins DJ, Kendall CW, Marchie A, Faulkner D et al. (2004). Combined effects of a dietary portfolio of plant sterols, vegetable protein, viscous fibre and almonds on LDL particle size. Br J Nutr 2004; 92: 657–663

    Article  CAS  PubMed  Google Scholar 

  • Leren P (1966). The effect of plasma cholesterol lowering diet in male survivors of myocardial infarction. Acta Med Scand 466, 1–92.

    CAS  Google Scholar 

  • Lewis GF, Rader DJ (2005). New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ Res 96, 1221–1232.

    Article  CAS  PubMed  Google Scholar 

  • Lichtenstein AH, Ausman LM, Jalbert SM, Schaefer EJ (1999). Effects of different forms of dietary hydrogenated fats on serum lipoprotein cholesterol levels. N Engl J Med 340, 1933–1941.

    Article  CAS  PubMed  Google Scholar 

  • Lichtenstein AH, Erkkila AT, Lamarche B, Schwab US (2003). Influence of hydrogenated fat and butter on CVD risk factors: remnant-like particles, glucose and insulin, blood pressure and C-reactive protein. Atherosclerosis 171, 97–107.

    Article  CAS  PubMed  Google Scholar 

  • Lo Prete AC, Dina CH, Azevedo CH, Puk CG, Lopes NH, Hueb WA et al. (2009). In vitro simultaneous transfer of lipids to hdl in coronary artery disease and in statin treatment. Lipids 44, 917–924.

    Article  CAS  PubMed  Google Scholar 

  • Madsen MB, Jensen AM, Schmidt EB (2007). The effect of a combination of plant sterol-enriched foods in mildly hypercholesterolemic subjects. Clin Nutr 26, 792–798.

    Article  CAS  PubMed  Google Scholar 

  • Maranhão RC, Cesar TB, Pedroso-Mariani SR, Hirata MH, Mesquita CH (1993). Metabolic behavior in rats of a nonprotein microemulsion resembling low-density lipoprotein. Lipids 28, 691–696.

    Article  PubMed  Google Scholar 

  • Masson D, Jiang XC, Lagrost L, Tall AR (2009). The role of plasma lipid transfer proteins in lipoprotein metabolism and atherogenesis. J Lipid Res 50, S201–S206.

    Article  PubMed  PubMed Central  Google Scholar 

  • McGee DL, Reed DM, Yano K, Kagan A, Tillotson J (1984). Ten-year incidence of coronary heart disease in the Honolulu Heart Program. Relationship with nutrient intake. Am J Epidemiol 119, 667–677.

    Article  CAS  PubMed  Google Scholar 

  • McQueen MJ, Hawken S, Wang X, Ounpuu S, Sniderman A, Probstfield J et al. (2008). Lipids, lipoproteins, and apolipoproteins as risk markers of myocardial infarction in 52 countries (the INTERHEART study): a case–control study. Lancet 372, 224–233.

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki O, Fukamachi I, Mori A, Hashimoto H, Kawashiri MA, Nohara A et al. (2009). Formation of prebeta 1-HDL during lipolysis of triglyceride-rich lipoprotein. Biochem Biophys Res Commun 379, 55–59.

    Article  CAS  PubMed  Google Scholar 

  • Morton RE (1988). Free cholesterol is a potent regulator of lipid transfer protein function. J Biol Chem 263, 12235–12341.

    CAS  PubMed  Google Scholar 

  • NCEP/ III ATP (2002). Third Report of the National Cholesterol Education Program (NCEP). Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 106, 3143–3421.

    Article  Google Scholar 

  • Normén L, Frohlich JJ, Trautwein EA (2004). Role of plant sterols in cholesterol lowering. In: Dutta PC (ed). Plant Sterols: Analytical, Nutritional, and Safety Aspects as Functional Food. pp 243–315. New York: Marcel Dekker.

    Google Scholar 

  • Plat J, Brufau G, Dallinga-Thie GM, Dasselaar M, Mensink RP (2009). A plant stanol yogurt drink alone or combined with a low-dose statin lowers serum triacylglycerol and non-HDL cholesterol in metabolic syndrome patients. J Nutr 139, 1143–1149.

    Article  CAS  PubMed  Google Scholar 

  • Puk CG, Bocchi EA, Lo Prete AC, Ferreira SM, Stolf NA, Maranhão RC (2009). Transfer of cholesterol and other lipids from a lipid nanoemulsion to high-density lipoprotein in heart transplant patients. J Heart Lung Transplant 28, 1075–1080.

    Article  PubMed  Google Scholar 

  • Rye KA, Bursill CA, Lambert G, Tabet F, Barter PJ (2009). The metabolism and anti-atherogenic properties of HDL. J Lipid Res 50 (Suppl), S195–S200.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaefer EJ (2002). Lipoproteins, nutrition, and heart disease. Am J Clin Nutr 75, 191–212.

    Article  CAS  PubMed  Google Scholar 

  • Stamler J (1979). Population studies. In: Levy R, Dennis BR, Ernest N (eds). Nutrition, Lipids, and Coronary Heart Disease. pp 25–88. Raven: New York.

    Google Scholar 

  • Trautwein EA, Duchateau GS, Lin YG, Mel’nkiv SM, Molhuizen HOF, Ntanios FY (2003). Proposed mechanism of cholesterol-lowering action of plant sterols. Eur J Lipid Sci Technol 105, 171–185.

    Article  CAS  Google Scholar 

  • Turpeinen O (1979). Effect of cholesterol-lowering diet on mortality from coronary heart disease and other causes. Circulation 59, 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Briggs MR (2004). HDL: the metabolism, function, and therapeutic importance. Chem Rev 104, 119–137.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Conselho Nacional de Desenvolvimento Científico e Pesquisa (National Research and Scientific Council) of Brazil, Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP), Proap and by a contract from the US Department of Agriculture. The spread products were provided by Unilever Corporation and Laticínios Aviação – Gonçalves Salles SA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R D Santos.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Contributers: A.C.M.G, R.D.S. and R.C.M. designed the research; A.C.M.G and R.D.S. conducted research; H.P.S. and R.C.M. provided essential materials; E.J.S., H.P.S. and R.C.M. analysed data; A.C.M.G, R.C.M., E.J.S. and R.D.S. wrote the paper and R.D.S. had primary responsibility for the final content. All authors read and approved the final manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gagliardi, A., Maranhão, R., Sousa, H. et al. Effects of margarines and butter consumption on lipid profiles, inflammation markers and lipid transfer to HDL particles in free-living subjects with the metabolic syndrome. Eur J Clin Nutr 64, 1141–1149 (2010). https://doi.org/10.1038/ejcn.2010.122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ejcn.2010.122

Keywords

This article is cited by

Search

Quick links