Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A universal minimal mass scale for present-day central black holes

Abstract

The early stages of massive black hole growth are poorly understood1. High-luminosity active galactic nuclei at very high redshift2 z further imply rapid growth soon after the Big Bang. Suggested formation mechanisms typically rely on the extreme conditions found in the early Universe (very low metallicity, very high gas or star density). It is therefore plausible that these black hole seeds were formed in dense environments, at least a Hubble time ago (z > 1.8 for a look-back time of tH = 10 Gyr)3. Intermediate-mass black holes (IMBHs) of mass M ≈ 102−105 solar masses, M, are the long-sought missing link4 between stellar black holes, born of supernovae5, and massive black holes6, tied to galaxy evolution by empirical scaling relations7,8. The relation between black hole mass, M, and stellar velocity dispersion, σ, that is observed in the local Universe over more than about three decades in massive black hole mass, correlates M and σ on scales that are well outside the massive black hole’s radius of dynamical influence6, r h G M / σ 2 . We show that low-mass black hole seeds that accrete stars from locally dense environments in galaxies following a universal M/σ relation9,10 grow over the age of the Universe to be above M 0 3 × 10 5 M (5% lower limit), independent of the unknown seed masses and formation processes. The mass M 0 depends weakly on the uncertain formation redshift, and sets a universal minimal mass scale for present-day black holes. This can explain why no IMBHs have yet been found6, and it implies that present-day galaxies with σ <  S 0  ≈ 40 km s–1 lack a central black hole, or formed it only recently. A dearth of IMBHs at low redshifts has observable implications for tidal disruptions11 and gravitational wave mergers12.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Plunge rates as function of the black hole mass.
Figure 2: Cosmological growth of the minimal black hole mass z as function of redshift.

Similar content being viewed by others

References

  1. Volonteri, M. The formation and evolution of massive black holes. Science 337, 544–547 (2012).

    Article  ADS  Google Scholar 

  2. Mortlock, D. J. et al. A luminous quasar at a redshift of z = 7.085. Nature 474, 616–619 (2011).

    Article  ADS  Google Scholar 

  3. Bennett, C. L., Larson, D., Weiland, J. L. & Hinshaw, G. The 1% Concordance Hubble Constant. Astrophys. J. 794, 135 (2014).

    Article  ADS  Google Scholar 

  4. Miller, M. C. & Colbert, E. J. M. Intermediate-mass black holes. Int. J. Mod. Phys. D 13, 1–64 (2004).

    Article  ADS  Google Scholar 

  5. Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  6. Graham, A. W. in Galactic Bulges (eds Laurikainen, E., Peletier, R. & Gadotti, D. ) 263–313 (Springer, 2016).

    Book  Google Scholar 

  7. Ferrarese, L. & Merritt, D. A fundamental relation between supermassive black holes and their host galaxies. Astrophys. J. 539, L9–L12 (2000).

    Article  ADS  Google Scholar 

  8. Gebhardt, K. et al. A relationship between nuclear black hole mass and galaxy velocity dispersion. Astrophys. J. 539, L13–L16 (2000).

    Article  ADS  Google Scholar 

  9. McConnell, N. J. & Ma, C.-P. Revisiting the scaling relations of black hole masses and host galaxy properties. Astrophys. J. 764, 184 (2013).

    Article  ADS  Google Scholar 

  10. van den Bosch, R. C. E. Unification of the fundamental plane and super massive black hole masses. Astrophys. J. 831, 134 (2016).

    Article  ADS  Google Scholar 

  11. Rees, M. J. Tidal disruption of stars by black holes of 106-108 solar masses in nearby galaxies. Nature 333, 523–528 (1988).

    Article  ADS  Google Scholar 

  12. Amaro-Seoane, P. et al. eLISA: Astrophysics and cosmology in the millihertz regime. GW Notes 6, 4–110 (2013).

    Google Scholar 

  13. Kormendy, J. & Ho, L. C. Coevolution (or not) of supermassive black holes and host galaxies. Annu. Rev. Astron. Astrophys. 51, 511–653 (2013).

    Article  ADS  Google Scholar 

  14. Shen, Y. et al. The Sloan Digital Sky Survey Reverberation Mapping project: no evidence for evolution in the M•−σ* relation to z ~ 1. Astrophys. J. 805, 96 (2015).

    Article  ADS  Google Scholar 

  15. Alexander, T. in The Galactic Center: A Window to the Nuclear Environment of Disk Galaxies (eds Morris, M. R., Wang, Q. D. & Yuan, F. ) ASP Conf. Ser. Vol. 439, 129–141 (ASP, 2011).

    Google Scholar 

  16. Bar-Or, B. & Alexander, T. Steady-state relativistic stellar dynamics around a massive black hole. Astrophys. J. 820, 129 (2016).

    Article  ADS  Google Scholar 

  17. Magorrian, J. & Tremaine, S. Rates of tidal disruption of stars by massive central black holes. Mon. Not. R. Astron. Soc. 309, 447–460 (1999).

    Article  ADS  Google Scholar 

  18. Merritt, D. Dynamics and Evolution of Galactic Nuclei (Princeton Univ. Press, 2013).

    MATH  Google Scholar 

  19. Stone, N. C., Küpper, A. H. W. & Ostriker, J. P. Formation of massive black holes in galactic nuclei: runaway tidal encounters. Mon. Not. R. Astron. Soc. 467, 4180–4199 (2017).

    ADS  Google Scholar 

  20. Ayal, S., Livio, M. & Piran, T. Tidal disruption of a solar-type star by a supermassive black hole. Astrophys. J. 545, 772–780 (2000).

    Article  ADS  Google Scholar 

  21. Bar-Or, B., Kupi, G. & Alexander, T. Stellar energy relaxation around a massive black hole. Astrophys. J. 764, 52 (2013).

    Article  ADS  Google Scholar 

  22. Xiao, T. et al. Exploring the low-mass end of the MBH–σ* relation with active galaxies. Astrophys. J. 739, 28 (2011).

    Article  ADS  Google Scholar 

  23. Salviander, S. & Shields, G. A. The black hole mass-stellar velocity dispersion relationship for quasars in the Sloan Digital Sky Survey Data Release 7. Astrophys. J. 764, 80 (2013).

    Article  ADS  Google Scholar 

  24. Sijacki, D. et al. The Illustris simulation: the evolving population of black holes across cosmic time. Mon. Not. R. Astron. Soc. 452, 575–596 (2015).

    Article  ADS  Google Scholar 

  25. Taylor, P. & Kobayashi, C. Time evolution of galaxy scaling relations in cosmological simulations. Mon. Not. R. Astron. Soc. 463, 2465–2479 (2016).

    Article  ADS  Google Scholar 

  26. Chen, X., Sesana, A., Madau, P. & Liu, F. K. Tidal stellar disruptions by massive black hole pairs. II. Decaying binaries. Astrophys. J. 729, 13 (2011).

    Article  ADS  Google Scholar 

  27. Walker, M. G. et al. A universal mass profile for dwarf spheroidal galaxies? Astrophys. J. 704, 1274–1287 (2009).

    Article  ADS  Google Scholar 

  28. Baldassare, V. F., Reines, A. E., Gallo, E. & Greene, J. E. A ~50,000M solar mass black hole in the nucleus of RGG 118. Astrophys. J. 809, L14 (2015).

    Article  ADS  Google Scholar 

  29. Kzltan, B., Baumgardt, H. & Loeb, A. An intermediate-mass black hole in the centre of the globular cluster 47 Tucanae. Nature 542, 203–205 (2017).

    Article  ADS  Google Scholar 

  30. Dubois, Y. et al. Black hole evolution: I. Supernova-regulated black hole growth. Mon. Not. R. Astron. Soc. 452, 1502–1518 (2015).

    Article  ADS  Google Scholar 

  31. Fialkov, A. & Loeb, A. Jetted tidal disruptions of stars as a flag of intermediate mass black holes at high redshifts. Available at http://arXiv.org/abs/1611.01386 (2016).

  32. Rosswog, S., Ramirez-Ruiz, E. & Hix, W. R. Tidal disruption and ignition of white dwarfs by moderately massive black holes. Astrophys. J. 695, 404–419 (2009).

    Article  ADS  Google Scholar 

  33. Stone, N. C. & Metzger, B. D. Rates of stellar tidal disruption as probes of the supermassive black hole mass function. Mon. Not. R. Astron. Soc. 455, 859–883 (2016).

    Article  ADS  Google Scholar 

  34. Yagi, K. Scientific potential of DECIGO Pathfinder and testing GR with space-borne gravitational wave interferometers. Int. J. Mod. Phys. D 22, 1341013 (2013).

    Article  ADS  Google Scholar 

  35. Bahcall, J. N. & Wolf, R. A. Star distribution around a massive black hole in a globular cluster. Astrophys. J. 209, 214–232 (1976).

    Article  ADS  Google Scholar 

  36. Lightman, A. P. & Shapiro, S. L. The distribution and consumption rate of stars around a massive, collapsed object. Astrophys. J. 211, 244–262 (1977).

    Article  ADS  Google Scholar 

  37. Hoyle, F. & Lyttleton, R. A. The effect of interstellar matter on climatic variation. Proc. Camb. Phil. Soc. 35, 405 (1939).

    Article  ADS  Google Scholar 

  38. Bondi, H. On spherically symmetrical accretion. Mon. Not. R. Astron. Soc. 112, 195 (1952).

    Article  ADS  MathSciNet  Google Scholar 

  39. Alexander, T. & Natarajan, P. Rapid growth of seed black holes in the early Universe by supra-exponential accretion. Science 345, 1330–1333 (2014).

    Article  ADS  Google Scholar 

  40. Murphy, B. W., Cohn, H. N. & Durisen, R. H. Dynamical and luminosity evolution of active galactic nuclei: models with a mass spectrum. Astrophys. J. 370, 60–77 (1991).

    Article  ADS  Google Scholar 

  41. Freitag, M. & Benz, W. A new Monte Carlo code for star cluster simulations. II. Central black hole and stellar collisions. Astron. Astrophys. 394, 345–374 (2002).

    Article  ADS  Google Scholar 

  42. Tremaine, S. et al. The slope of the black hole mass versus velocity dispersion correlation. Astrophys. J. 574, 740–753 (2002).

    Article  ADS  Google Scholar 

  43. Syer, D. & Ulmer, A. Tidal disruption rates of stars in observed galaxies. Mon. Not. R. Astron. Soc. 306, 35–42 (1999).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful for discussions with Y. Alexander, J. Gair, A. Gal-Yam, J. Green, J. Guillochon, M. MacLeod, N. Neumayer, T. Piran, E. Rossi, A. Sesana, J. Silk, N. Stone and B. Trakhtenbrot. T.A. acknowledges support from the I-CORE Program of the Planning and Budgeting Committee and The Israel Science Foundation (Grant No. 1829/12). B.B.-O. acknowledges support from NASA (grant NNX14AM24G) and the NSF (Grant AST-1406166).

Author information

Authors and Affiliations

Authors

Contributions

T.A. and B.B.-O. developed the ideas presented in this paper together and collaborated in its writing.

Corresponding authors

Correspondence to Tal Alexander or Ben Bar-Or.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexander, T., Bar-Or, B. A universal minimal mass scale for present-day central black holes. Nat Astron 1, 0147 (2017). https://doi.org/10.1038/s41550-017-0147

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41550-017-0147

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing