Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Deregulation and therapeutic potential of microRNAs in arthritic diseases

An Erratum to this article was published on 14 July 2016

This article has been updated

Key Points

  • MicroRNA (miRNA) deregulation has a role in the breakdown of cartilage homeostasis and in osteoarticular diseases

  • Most miRNAs deregulated in mesenchymal stromal or stem cells (MSC) in the context of rheumatic diseases are involved in cell differentiation or anti-inflammatory mechanisms

  • Fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis (RA) have altered levels of specific miRNAs that have important roles in the modulation of inflammatory or catabolic functions, or both

  • Modulation of miRNAs in MSC or FLS for therapeutic purposes in rheumatic diseases has not been developed yet

  • Abnormal expression of miRNAs in immune cells in the context of arthritis has been described, and promising candidates for therapy have been identified

  • Targeting miRNA expression in monocytes to silence inflammatory and bone catabolic pathways could be a promising and efficient strategy to treat arthritic conditions

Abstract

Epigenetic abnormalities are part of the pathogenetic alterations involved in the development of rheumatic disorders. In this context, the main musculoskeletal cell lineages, which are generated from the pool of mesenchymal stromal cells (MSCs), and the immune cells that participate in rheumatic diseases are deregulated. In this Review, we focus on microRNA (miRNA)-mediated regulatory pathways that control cell proliferation, drive the production of proinflammatory mediators and modulate bone remodelling. The main studies that identify miRNAs as regulators of immune cell fate, MSC differentiation and immunomodulatory properties — parameters that are altered in rheumatoid arthritis (RA) and osteoarthritis (OA) — are also discussed, with emphasis on the importance of miRNAs in the regulation of cellular machinery, extracellular matrix remodelling and cytokine release. A deeper understanding of the involvement of miRNAs in rheumatic diseases is needed before these regulatory pathways can be explored as therapeutic approaches for patients with RA or OA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: miRNAs that control differention of MSCs.
Figure 2: miRNAs that are deregulated in OA.
Figure 3: miRNAs that are deregulated in RA.

Similar content being viewed by others

Change history

  • 14 July 2016

    In Figures 1 and 3 of the above article, arrows described as red in the figure legends were shown as black. Additionally, there was a typographical error on page 217 of the above article. These have now been corrected in the online pdf.

References

  1. Chang, T. C. & Mendell, J. T. MicroRNAs in vertebrate physiology and human disease. Annu. Rev. Genom. Hum. Genet. 8, 215–239 (2007).

    CAS  Google Scholar 

  2. Ghildiyal, M. & Zamore, P. D. Small silencing RNAs: an expanding universe. Nat. Rev. Genet. 10, 94–108 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hausser, J. & Zavolan, M. Identification and consequences of miRNA–target interactions — beyond repression of gene expression. Nat. Rev. Genet. 15, 599–612 (2014).

    CAS  PubMed  Google Scholar 

  4. Jia, S., Zhai, H. & Zhao, M. MicroRNAs regulate immune system via multiple targets. Discov. Med. 18, 237–247 (2014).

    PubMed  Google Scholar 

  5. Salama, A. et al. MicroRNA-29b modulates innate and antigen-specific immune responses in mouse models of autoimmunity. PLoS ONE 9, e106153 (2014).

    PubMed  PubMed Central  Google Scholar 

  6. Shen, N., Liang, D., Tang, Y., de Vries, N. & Tak, P. P. MicroRNAs — novel regulators of systemic lupus erythematosus pathogenesis. Nat. Rev. Rheumatol. 8, 701–709 (2012).

    CAS  PubMed  Google Scholar 

  7. Frangou, E. A., Bertsias, G. K. & Boumpas, D. T. Gene expression and regulation in systemic lupus erythematosus. Eur. J. Clin. Invest. 43, 1084–1096 (2013).

    CAS  PubMed  Google Scholar 

  8. Dominici, M. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315–317 (2006).

    CAS  PubMed  Google Scholar 

  9. Clark, E. A., Kalomoiris, S., Nolta, J. A. & Fierro, F. A. Concise review: microRNA function in multipotent mesenchymal stromal cells. Stem Cells 32, 1074–1082 (2014).

    CAS  PubMed  Google Scholar 

  10. Lakshmipathy, U. & Hart, R. P. Concise review: microRNA expression in multipotent mesenchymal stromal cells. Stem Cells 26, 356–363 (2008).

    CAS  PubMed  Google Scholar 

  11. Huang, J., Zhao, L., Xing, L. & Chen, D. MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem Cells 28, 357–364 (2010).

    PubMed  PubMed Central  Google Scholar 

  12. Hamam, D. et al. MicroRNA-320/RUNX2 axis regulates adipocytic differentiation of human mesenchymal (skeletal) stem cells. Cell Death Dis. 5, e1499 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Zaragosi, L. E. et al. Small RNA sequencing reveals miR-642a-3p as a novel adipocyte-specific microRNA and miR-30 as a key regulator of human adipogenesis. Genome Biol. 12, R64 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang, J. F. et al. miR-637 maintains the balance between adipocytes and osteoblasts by directly targeting Osterix. Mol. Biol. Cell 22, 3955–3961 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Tomé, M. et al. miR-335 orchestrates cell proliferation, migration and differentiation in human mesenchymal stem cells. Cell Death Differ. 18, 985–995 (2011).

    PubMed  Google Scholar 

  16. Eskildsen, T. et al. MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo. Proc. Natl Acad. Sci. USA 108, 6139–6144 (2011).

    PubMed  PubMed Central  Google Scholar 

  17. Gibson, G. & Asahara, H. MicroRNAs and cartilage. J. Orthop. Res. 31, 1333–1344 (2013).

    CAS  PubMed  Google Scholar 

  18. Jia, J. et al. miR-145 suppresses osteogenic differentiation by targeting Sp7. FEBS Lett. 587, 3027–3031 (2013).

    CAS  PubMed  Google Scholar 

  19. Li, E., Zhang, J., Yuan, T. & Ma, B. miR-143 suppresses osteogenic differentiation by targeting Osterix. Mol. Cell Biochem. 390, 69–74 (2014).

    CAS  PubMed  Google Scholar 

  20. Guérit, D. et al. FOXO3A regulation by miRNA-29a controls chondrogenic differentiation of mesenchymal stem cells and cartilage formation. Stem Cells Dev. 23, 1195–1205 (2014).

    PubMed  Google Scholar 

  21. Umeda, M., Terao, F., Miyazaki, K., Yoshizaki, K. & Takahashi, I. MicroRNA-200a regulates the development of mandibular condylar cartilage. J. Dent. Res. 94, 795–802 (2015).

    CAS  PubMed  Google Scholar 

  22. Kapinas, K., Kessler, C., Ricks, T., Gronowicz, G. & Delany, A. M. miR-29 modulates Wnt signaling in human osteoblasts through a positive feedback loop. J. Biol. Chem. 285, 25221–25231 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Karbiener, M. et al. MicroRNA miR-27b impairs human adipocyte differentiation and targets PPARγ. Biochem. Biophys. Res. Commun. 390, 247–251 (2009).

    CAS  PubMed  Google Scholar 

  24. Kim, S. Y. et al. miR-27a is a negative regulator of adipocyte differentiation via suppressing PPARγ expression. Biochem. Biophys. Res. Commun. 392, 323–328 (2010).

    CAS  PubMed  Google Scholar 

  25. Lee, E. K. et al. miR-130 suppresses adipogenesis by inhibiting peroxisome proliferator-activated receptor γ expression. Mol. Cell. Biol. 31, 626–638 (2011).

    CAS  PubMed  Google Scholar 

  26. Hamam, D., Ali, D., Kassem, M., Aldahmash, A. & Alajez, N. M. MicroRNAs as regulators of adipogenic differentiation of mesenchymal stem cells. Stem Cells Dev. 24, 417–425 (2015).

    CAS  PubMed  Google Scholar 

  27. Ahn, J., Lee, H., Jung, C. H., Jeon, T. I. & Ha, T. Y. MicroRNA-146b promotes adipogenesis by suppressing the SIRT1–FOXO1 cascade. EMBO Mol. Med. 5, 1602–1612 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim, Y. J., Bae, S. W., Yu, S. S., Bae, Y. C. & Jung, J. S. miR-196a regulates proliferation and osteogenic differentiation in mesenchymal stem cells derived from human adipose tissue. J. Bone Miner. Res. 24, 816–825 (2009).

    CAS  PubMed  Google Scholar 

  29. Mizuno, Y. et al. miR-210 promotes osteoblastic differentiation through inhibition of AcvR1b. FEBS Lett. 583, 2263–2268 (2009).

    CAS  PubMed  Google Scholar 

  30. Li, H. et al. A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J. Clin. Invest. 119, 3666–3677 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim, D. et al. Two non-coding RNAs, microRNA-101 and HOTTIP contribute cartilage integrity by epigenetic and homeotic regulation of integrin-α1. Cell Signal 25, 2878–2887 (2013).

    CAS  PubMed  Google Scholar 

  32. Kim, M., Kim, C., Choi, Y. S., Park, C. & Suh, Y. Age-related alterations in mesenchymal stem cells related to shift in differentiation from osteogenic to adipogenic potential: implication to age-associated bone diseases and defects. Mech. Ageing Dev. 133, 215–225 (2012).

    PubMed  Google Scholar 

  33. Martinez-Sanchez, A., Dudek, K. A. & Murphy, C. L. Regulation of human chondrocyte function through direct inhibition of cartilage master regulator SOX9 by microRNA-145 (miRNA-145). J. Biol. Chem. 287, 916–924 (2012).

    CAS  PubMed  Google Scholar 

  34. Xu, J., Kang, Y., Liao, W. M. & Yu, L. miR-194 regulates chondrogenic differentiation of human adipose-derived stem cells by targeting Sox5. PLoS ONE 7, e31861 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Lin, E. A., Kong, L., Bai, X. H., Luan, Y. & Liu, C. J. miR-199a, a bone morphogenic protein 2-responsive microRNA, regulates chondrogenesis via direct targeting to Smad1. J. Biol. Chem. 284, 11326–11335 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Guérit, D. et al. Sox9-regulated miRNA-574-3p inhibits chondrogenic differentiation of mesenchymal stem cells. PLoS ONE 8, e62582 (2013).

    PubMed  PubMed Central  Google Scholar 

  37. Ham, O. et al. The role of microRNA-23b in the differentiation of MSC into chondrocyte by targeting protein kinase A signaling. Biomaterials 33, 4500–4507 (2012).

    CAS  PubMed  Google Scholar 

  38. Tuddenham, L. et al. The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells. FEBS Lett. 580, 4214–4217 (2006).

    CAS  PubMed  Google Scholar 

  39. Djouad, F. et al. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 102, 3837–3844 (2003).

    CAS  PubMed  Google Scholar 

  40. Marigo, I. & Dazzi, F. The immunomodulatory properties of mesenchymal stem cells. Semin. Immunopathol. 33, 593–602 (2011).

    PubMed  Google Scholar 

  41. Le Blanc, K. & Mougiakakos, D. Multipotent mesenchymal stromal cells and the innate immune system. Nat. Rev. Immunol. 12, 383–396 (2012).

    CAS  PubMed  Google Scholar 

  42. Liu, L. et al. MicroRNA-181a regulates local immune balance by inhibiting proliferation and immunosuppressive properties of mesenchymal stem cells. Stem Cells 30, 1756–1770 (2012).

    CAS  PubMed  Google Scholar 

  43. Xu, C. et al. miR-155 regulates immune modulatory properties of mesenchymal stem cells by targeting TAK1-binding protein 2. J. Biol. Chem. 288, 11074–11079 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhao, X. et al. The toll-like receptor 3 ligand, poly(I:C), improves immunosuppressive function and therapeutic effect of mesenchymal stem cells on sepsis via inhibiting miR-143. Stem Cells 32, 521–533 (2014).

    CAS  PubMed  Google Scholar 

  45. Chen, K. D. et al. Identification of miR-27b as a novel signature from the mRNA profiles of adipose-derived mesenchymal stem cells involved in the tolerogenic response. PLoS ONE 8, e60492 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Matysiak, M. et al. MicroRNA-146a negatively regulates the immunoregulatory activity of bone marrow stem cells by targeting prostaglandin E2 synthase-2. J. Immunol. 190, 5102–5109 (2013).

    CAS  PubMed  Google Scholar 

  47. Jones, S. W. et al. The identification of differentially expressed microRNA in osteoarthritic tissue that modulate the production of TNF-α and MMP13. Osteoarthr. Cartil. 17, 464–472 (2009).

    CAS  Google Scholar 

  48. Iliopoulos, D., Malizos, K. N., Oikonomou, P. & Tsezou, A. Integrative microRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks. PLoS ONE 3, e3740 (2008).

    PubMed  PubMed Central  Google Scholar 

  49. Tardif, G., Hum, D., Pelletier, J. P., Duval, N. & Martel-Pelletier, J. Regulation of the IGFBP-5 and MMP-13 genes by the microRNAs miR-140 and miR-27a in human osteoarthritic chondrocytes. BMC Musculoskelet. Disord. 10, 148 (2009).

    PubMed  PubMed Central  Google Scholar 

  50. Miyaki, S. et al. MicroRNA-140 is expressed in differentiated human articular chondrocytes and modulates interleukin-1 responses. Arthritis Rheum. 60, 2723–2730 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Miyaki, S. et al. MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes Dev. 24, 1173–1185 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Nakamura, Y. et al. Sox9 is upstream of microRNA-140 in cartilage. Appl. Biochem. Biotechnol. 166, 64–71 (2012).

    CAS  PubMed  Google Scholar 

  53. Akhtar, N. et al. MicroRNA-27b regulates the expression of matrix metalloproteinase 13 in human osteoarthritis chondrocytes. Arthritis Rheum. 62, 1361–1371 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Mirzamohammadi, F., Papaioannou, G. & Kobayashi, T. MicroRNAs in cartilage development, homeostasis, and disease. Curr. Osteoporos Rep. 12, 410–419 (2014).

    PubMed  PubMed Central  Google Scholar 

  55. Swingler, T. E. et al. The expression and function of microRNAs in chondrogenesis and osteoarthritis. Arthritis Rheum. 64, 1909–1919 (2012).

    CAS  PubMed  Google Scholar 

  56. Ham, O. et al. Upregulation of miR-23b enhances the autologous therapeutic potential for degenerative arthritis by targeting PRKACB in synovial fluid-derived mesenchymal stem cells from patients. Mol. Cells 37, 449–456 (2014).

    PubMed  PubMed Central  Google Scholar 

  57. Yamasaki, K. et al. Expression of MicroRNA-146a in osteoarthritis cartilage. Arthritis Rheum. 60, 1035–1041 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Gu, S. X. et al. MicroRNA-146a reduces IL-1 dependent inflammatory responses in the intervertebral disc. Gene 555, 80–87 (2015).

    CAS  PubMed  Google Scholar 

  59. Yang, B. et al. Effect of microRNA-145 on IL-1β-induced cartilage degradation in human chondrocytes. FEBS Lett. 588, 2344–2352 (2014).

    CAS  PubMed  Google Scholar 

  60. Akhtar, N. & Haqqi, T. M. MicroRNA-199a* regulates the expression of cyclooxygenase-2 in human chondrocytes. Ann. Rheum. Dis. 71, 1073–1080 (2012).

    CAS  PubMed  Google Scholar 

  61. Park, S. J., Cheon, E. J. & Kim, H. A. MicroRNA-558 regulates the expression of cyclooxygenase-2 and IL-1β-induced catabolic effects in human articular chondrocytes. Osteoarthr. Cartil. 21, 981–989 (2013).

    CAS  Google Scholar 

  62. Li, X. et al. Altered spinal microRNA-146a and the microRNA-183 cluster contribute to osteoarthritic pain in knee joints. J. Bone Miner. Res. 28, 2512–2522 (2013).

    CAS  PubMed  Google Scholar 

  63. Santini, P., Politi, L., Vedova, P. D., Scandurra, R. & Scotto d'Abusco, A. The inflammatory circuitry of miR-149 as a pathological mechanism in osteoarthritis. Rheumatol. Int. 34, 711–716 (2014).

    CAS  PubMed  Google Scholar 

  64. Djouad, F. et al. Transcriptional profiles discriminate bone marrow-derived and synovium-derived mesenchymal stem cells. Arthritis Res. Ther. 7, R1304–R1315 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Klein, K., Ospelt, C. & Gay, S. Epigenetic contributions in the development of rheumatoid arthritis. Arthritis Res. Ther. 14, 227 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Karouzakis, E., Gay, R. E., Michel, B. A., Gay, S. & Neidhart, M. DNA hypomethylation in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum. 60, 3613–3622 (2009).

    CAS  PubMed  Google Scholar 

  67. Bottini, N. & Firestein, G. S. Duality of fibroblast-like synoviocytes in RA: passive responders and imprinted aggressors. Nat. Rev. Rheumatol. 9, 24–33 (2013).

    CAS  PubMed  Google Scholar 

  68. Nakasa, T. et al. Expression of microRNA-146 in rheumatoid arthritis synovial tissue. Arthritis Rheum. 58, 1284–1292 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Stanczyk, J. et al. Altered expression of microRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum. 58, 1001–1009 (2008).

    PubMed  Google Scholar 

  70. Long, L. et al. Upregulated microRNA-155 expression in peripheral blood mononuclear cells and fibroblast-like synoviocytes in rheumatoid arthritis. Clin. Dev. Immunol. 2013, 296139 (2013).

    PubMed  PubMed Central  Google Scholar 

  71. O'Connell, R. M. et al. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity 33, 607–619 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Kurowska-Stolarska, M. et al. MicroRNA-155 as a proinflammatory regulator in clinical and experimental arthritis. Proc. Natl Acad. Sci. USA 108, 11193–11198 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Blüml, S. et al. Essential role of microRNA-155 in the pathogenesis of autoimmune arthritis in mice. Arthritis Rheum. 63, 1281–1288 (2011).

    PubMed  Google Scholar 

  74. Taganov, K. D., Boldin, M. P., Chang, K. J. & Baltimore, D. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl Acad. Sci. USA 103, 12481–12486 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Stanczyk, J. et al. Altered expression of microRNA-203 in rheumatoid arthritis synovial fibroblasts and its role in fibroblast activation. Arthritis Rheum. 63, 373–381 (2011).

    PubMed  PubMed Central  Google Scholar 

  76. Pandis, I. et al. Identification of microRNA-221/222 and microRNA-323-3p association with rheumatoid arthritis via predictions using the human tumour necrosis factor transgenic mouse model. Ann. Rheum. Dis. 71, 1716–1723 (2012).

    CAS  PubMed  Google Scholar 

  77. Wang, S. et al. Upregulation of microRNA-203 is associated with advanced tumor progression and poor prognosis in epithelial ovarian cancer. Med. Oncol. 30, 681 (2013).

    CAS  PubMed  Google Scholar 

  78. Chang, X. et al. miR-203 inhibits melanoma invasive and proliferative abilities by targeting the polycomb group gene BMI1. Biochem. Biophys. Res. Commun. 456, 361–366 (2015).

    CAS  PubMed  Google Scholar 

  79. Wong, Q. W. et al. miR-222 overexpression confers cell migratory advantages in hepatocellular carcinoma through enhancing AKT signaling. Clin. Cancer Res. 16, 867–875 (2010).

    CAS  PubMed  Google Scholar 

  80. Shah, M. Y. & Calin, G. A. MicroRNAs miR-221 and miR-222: a new level of regulation in aggressive breast cancer. Genome Med. 3, 56 (2011).

    PubMed  PubMed Central  Google Scholar 

  81. Yang, S. & Yang, Y. Downregulation of microRNA-221 decreases migration and invasion in fibroblast-like synoviocytes in rheumatoid arthritis. Mol. Med. Rep. 12, 2395–2401 (2015).

    CAS  PubMed  Google Scholar 

  82. Lin, J. et al. A novel p53/microRNA-22/Cyr61 axis in synovial cells regulates inflammation in rheumatoid arthritis. Arthritis Rheumatol. 66, 49–59 (2014).

    CAS  PubMed  Google Scholar 

  83. Zhang, Q. et al. A critical role of Cyr61 in interleukin-17-dependent proliferation of fibroblast-like synoviocytes in rheumatoid arthritis. Arthritis Rheum. 60, 3602–3612 (2009).

    CAS  PubMed  Google Scholar 

  84. Niederer, F. et al. Down-regulation of microRNA-34a* in rheumatoid arthritis synovial fibroblasts promotes apoptosis resistance. Arthritis Rheum. 64, 1771–1779 (2012).

    CAS  PubMed  Google Scholar 

  85. Nakamachi, Y. et al. MicroRNA-124a is a key regulator of proliferation and monocyte chemoattractant protein 1 secretion in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Arthritis Rheum. 60, 1294–1304 (2009).

    PubMed  Google Scholar 

  86. Zhou, Q. et al. Research of the methylation status of miR-124a gene promoter among rheumatoid arthritis patients. Clin. Dev. Immunol. 2013, 524204 (2013).

    PubMed  PubMed Central  Google Scholar 

  87. Miao, C. G. et al. MicroRNA-152 modulates the canonical Wnt pathway activation by targeting DNA methyltransferase 1 in arthritic rat model. Biochimie 106, 149–156 (2014).

    CAS  PubMed  Google Scholar 

  88. Miao, C. G. et al. miR-375 regulates the canonical Wnt pathway through FZD8 silencing in arthritis synovial fibroblasts. Immunol. Lett. 164, 1–10 (2015).

    CAS  PubMed  Google Scholar 

  89. Philippe, L., Alsaleh, G., Bahram, S., Pfeffer, S. & Georgel, P. The miR-17 92 cluster: a key player in the control of inflammation during rheumatoid arthritis. Front. Immunol. 4, 70 (2013).

    PubMed  PubMed Central  Google Scholar 

  90. Trenkmann, M. et al. Tumor necrosis factor α-induced microRNA-18a activates rheumatoid arthritis synovial fibroblasts through a feedback loop in NF-κB signaling. Arthritis Rheum. 65, 916–927 (2013).

    CAS  PubMed  Google Scholar 

  91. Philippe, L. et al. TLR2 expression is regulated by microRNA miR-19 in rheumatoid fibroblast-like synoviocytes. J. Immunol. 188, 454–461 (2012).

    CAS  PubMed  Google Scholar 

  92. Philippe, L. et al. miR-20a regulates ASK1 expression and TLR4-dependent cytokine release in rheumatoid fibroblast-like synoviocytes. Ann. Rheum. Dis. 72, 1071–1079 (2013).

    CAS  PubMed  Google Scholar 

  93. Alsaleh, G. et al. miR-30a-3p negatively regulates BAFF synthesis in systemic sclerosis and rheumatoid arthritis fibroblasts. PLoS ONE 9, e111266 (2014).

    PubMed  PubMed Central  Google Scholar 

  94. Niimoto, T. et al. MicroRNA-146a expresses in interleukin-17 producing T cells in rheumatoid arthritis patients. BMC Musculoskelet. Disord. 11, 209 (2010).

    PubMed  PubMed Central  Google Scholar 

  95. Li, J. et al. Altered microRNA expression profile with miR-146a upregulation in CD4+ T cells from patients with rheumatoid arthritis. Arthritis Res. Ther. 12, R81 (2010).

    PubMed  PubMed Central  Google Scholar 

  96. Pauley, K. M. et al. Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Res. Ther. 10, R101 (2008).

    PubMed  PubMed Central  Google Scholar 

  97. Nakasa, T., Shibuya, H., Nagata, Y., Niimoto, T. & Ochi, M. The inhibitory effect of microRNA-146a expression on bone destruction in collagen-induced arthritis. Arthritis Rheum. 63, 1582–1590 (2011).

    CAS  PubMed  Google Scholar 

  98. Chen, T. et al. MicroRNA-146a regulates the maturation process and pro-inflammatory cytokine secretion by targeting CD40L in oxLDL-stimulated dendritic cells. FEBS Lett. 585, 567–573 (2011).

    CAS  PubMed  Google Scholar 

  99. O'Connell, R. M., Taganov, K. D., Boldin, M. P., Cheng, G. & Baltimore, D. MicroRNA-155 is induced during the macrophage inflammatory response. Proc. Natl Acad. Sci. USA 104, 1604–1609 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Mann, M., Barad, O., Agami, R., Geiger, B. & Hornstein, E. miRNA-based mechanism for the commitment of multipotent progenitors to a single cellular fate. Proc. Natl Acad. Sci. USA 107, 15804–15809 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Rodriguez, A. et al. Requirement of bic/microRNA-155 for normal immune function. Science 316, 608–611 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Thai, T. H. et al. Regulation of the germinal center response by microRNA-155. Science 316, 604–608 (2007).

    CAS  PubMed  Google Scholar 

  103. Teng, G. et al. MicroRNA-155 is a negative regulator of activation-induced cytidine deaminase. Immunity 28, 621–629 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Smigielska-Czepiel, K. et al. Comprehensive analysis of miRNA expression in T-cell subsets of rheumatoid arthritis patients reveals defined signatures of naive and memory Tregs. Genes Immun. 15, 115–125 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhou, Q. et al. Decreased expression of miR-146a and miR-155 contributes to an abnormal Treg phenotype in patients with rheumatoid arthritis. Ann. Rheum. Dis. 74, 1265–1274 (2015).

    CAS  PubMed  Google Scholar 

  106. Boldin, M. P. et al. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J. Exp. Med. 208, 1189–1201 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Starczynowski, D. T. et al. Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. Nat. Med. 16, 49–58 (2010).

    CAS  PubMed  Google Scholar 

  108. Guo, Q. et al. Forced miR-146a expression causes autoimmune lymphoproliferative syndrome in mice via downregulation of Fas in germinal center B cells. Blood 121, 4875–4883 (2013).

    CAS  PubMed  Google Scholar 

  109. Lochhead, R. B. et al. MicroRNA-146a provides feedback regulation of lyme arthritis but not carditis during infection with Borrelia burgdorferi. PLoS Pathog. 10, e1004212 (2014).

    PubMed  PubMed Central  Google Scholar 

  110. Schulte, L. N., Westermann, A. J. & Vogel, J. Differential activation and functional specialization of miR-146 and miR-155 in innate immune sensing. Nucleic Acids Res. 41, 542–553 (2013).

    CAS  PubMed  Google Scholar 

  111. Zhao, J. L., Rao, D. S., O'Connell, R. M., Garcia-Flores, Y. & Baltimore, D. MicroRNA-146a acts as a guardian of the quality and longevity of hematopoietic stem cells in mice. eLIFE 2, e00537 (2013).

    PubMed  PubMed Central  Google Scholar 

  112. Rouas, R. et al. Human natural Treg microRNA signature: role of microRNA-31 and microRNA-21 in FOXP3 expression. Eur. J. Immunol. 39, 1608–1618 (2009).

    CAS  PubMed  Google Scholar 

  113. Sawant, D. V., Wu, H., Kaplan, M. H. & Dent, A. L. The Bcl6 target gene microRNA-21 promotes Th2 differentiation by a T cell intrinsic pathway. Mol. Immunol. 54, 435–442 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Dong, L. et al. Decreased expression of microRNA-21 correlates with the imbalance of Th17 and Treg cells in patients with rheumatoid arthritis. J. Cell. Mol. Med. 18, 2213–2224 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. van der Geest, K. S. et al. SF Treg cells transcribing high levels of Bcl-2 and microRNA-21 demonstrate limited apoptosis in RA. Rheumatology (Oxford) 54, 950–958 (2015).

    CAS  Google Scholar 

  116. Lu, M. C. et al. Increased miR-223 expression in T cells from patients with rheumatoid arthritis leads to decreased insulin-like growth factor-1-mediated interleukin-10 production. Clin. Exp. Immunol. 177, 641–651 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Fulci, V. et al. miR-223 is overexpressed in T-lymphocytes of patients affected by rheumatoid arthritis. Hum. Immunol. 71, 206–211 (2010).

    CAS  PubMed  Google Scholar 

  118. Li, Y. T. et al. Brief report: amelioration of collagen-induced arthritis in mice by lentivirus-mediated silencing of microRNA-223. Arthritis Rheum. 64, 3240–3245 (2012).

    CAS  PubMed  Google Scholar 

  119. Sugatani, T., Vacher, J. & Hruska, K. A. A microRNA expression signature of osteoclastogenesis. Blood 117, 3648–3657 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Haftmann, C. et al. miR-148a is upregulated by Twist1 and T-bet and promotes Th1-cell survival by regulating the proapoptotic gene Bim. Eur. J. Immunol. 45, 1192–1205 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Murata, K. et al. MicroRNA-451 down-regulates neutrophil chemotaxis via p38 MAPK. Arthritis Rheumatol. 66, 549–559 (2014).

    CAS  PubMed  Google Scholar 

  122. Jiang, C. et al. MicroRNA-26a negatively regulates toll-like receptor 3 expression of rat macrophages and ameliorates pristane induced arthritis in rats. Arthritis Res. Ther. 16, R9 (2014).

    PubMed  PubMed Central  Google Scholar 

  123. Vinatier, C. et al. Cartilage tissue engineering: towards a biomaterial-assisted mesenchymal stem cell therapy. Curr. Stem Cell Res. Ther. 4, 318–329 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Ochi, M., Nakasa, T., Kamei, G., Usman, M. A. & El Mahmoud, H. Regenerative medicine in orthopedics using cells, scaffold, and microRNA. J. Orthop. Sci. 19, 521–528 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Li, Y. et al. The promotion of bone regeneration through positive regulation of angiogenic-osteogenic coupling using microRNA-26a. Biomaterials 34, 5048–5058 (2013).

    CAS  PubMed  Google Scholar 

  126. Shoji, T. et al. The effect of intra-articular injection of microRNA-210 on ligament healing in a rat model. Am. J. Sports Med. 40, 2470–2478 (2012).

    PubMed  Google Scholar 

  127. Karlsen, T. A. & Brinchmann, J. E. Liposome delivery of microRNA-145 to mesenchymal stem cells leads to immunological off-target effects mediated by RIG-I. Mol. Ther. 21, 1169–1181 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Apparailly, F. & Jorgensen, C. siRNA-based therapeutic approaches for rheumatic diseases. Nat. Rev. Rheumatol. 9, 56–62 (2013).

    CAS  PubMed  Google Scholar 

  129. Nakamachi, Y. et al. MicroRNA-124 inhibits the progression of adjuvant-induced arthritis in rats. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2014-206417 (2015).

  130. Lee, Y. et al. MicroRNA-124 regulates osteoclast differentiation. Bone 56, 383–389 (2013).

    CAS  PubMed  Google Scholar 

  131. Nagata, Y. et al. Induction of apoptosis in the synovium of mice with autoantibody-mediated arthritis by the intraarticular injection of double-stranded microRNA-15a. Arthritis Rheum. 60, 2677–2683 (2009).

    CAS  PubMed  Google Scholar 

  132. Leah, E. Rheumatoid arthritis: miR-155 mediates inflammation. Nat. Rev. Rheumatol. 7, 437 (2011).

    PubMed  Google Scholar 

  133. Duroux-Richard, I., Jorgensen, C. & Apparailly, F. What do microRNAs mean for rheumatoid arthritis? Arthritis Rheum. 64, 11–20 (2012).

    CAS  PubMed  Google Scholar 

  134. Duroux-Richard, I., Jorgensen, C. & Apparailly, F. miRNAs and rheumatoid arthritis — promising novel biomarkers. Swiss Med. Wkly 141, w13175 (2011).

    PubMed  Google Scholar 

  135. Alevizos, I. & Illei, G. G. MicroRNAs as biomarkers in rheumatic diseases. Nat. Rev. Rheumatol. 6, 391–398 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Beyer, C. et al. Signature of circulating microRNAs in osteoarthritis. Ann. Rheum. Dis. 74, e18 (2015).

    PubMed  Google Scholar 

Download references

Acknowledgements

R.V. is a recipient of an European BeTheCure postdoctoral fellowship (115142–2). The authors' research is supported by INSERM, the University of Montpellier, the European Union Horizon 2020 program (ADIPOA), Arthritis R&D (ROAD: Research on Osteoarthritic Diseases) and the ANR (French National Research Agency).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of the manuscript (researching data for the article, discussions of its content, writing, review and editing of the manuscript before submission).

Corresponding author

Correspondence to Christian Jorgensen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vicente, R., Noël, D., Pers, YM. et al. Deregulation and therapeutic potential of microRNAs in arthritic diseases. Nat Rev Rheumatol 12, 211–220 (2016). https://doi.org/10.1038/nrrheum.2015.162

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2015.162

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing