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Researchers are
using various
machine-learning
strategies to

speed up climate
modelling, reduce
its energy costs and
hopefully improve
accuracy.

By Carissa Wong
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limate scientist Tapio Schneider is
delighted that machine learning
has taken the drudgery out of his
day. When he first started model-
ling how clouds form, more than
adecade ago, this mostly involved
painstakingly tweaking equations
that describe how water droplets,
air flow and temperature interact. But since
2017, machine learning and artificial intelli-
gence (Al) have transformed the way he works.

“Machine learning makes this science a lot
more fun,” says Schneider, who works at the
Californialnstitute of Technology in Pasadena.
“It’s vastly faster, more satisfying and you can
get better solutions.”

Conventional climate models are built
manually from scratch by scientists such as
Schneider, who use mathematical equations to
describe the physical processes by which the
land, oceans and air interact and affect the cli-
mate. These models work well enough to make
climate projections that guide global policy.

But the models rely on powerful super-
computers, take weeks to run and are
energy-intensive. A typical model consumes
up to 10 megawatt hours of energy to sim-
ulate a century of climate, says Schneider.
On average, that is about the amount of
electricity used annually by a US household.
Moreover, such models struggle to simulate
small-scale processes, such as how raindrops
form, which often have an important rolein
large-scale weather and climate outcomes,
says Schneider.

Thebranch of Al called machine learning —
inwhich computer programslearn by spotting
patterns in data sets — has shown promise in
weather forecasting and is now steppingin to
help with these issues in climate modelling.

“The trajectory of machine learning for cli-
mate projectionsis looking really promising,”
says computer scientist Aditya Grover at the
University of California, Los Angeles. Similar to
the early days of weather forecasting, he says,
thereisaflurry ofinnovation that promises to
transform how scientists model the climate.

But there are still hurdles to overcome —
including convincing everyone that models
based on machine learning are getting their
projections right.

Copy cats
Researchers are using Al for climate modelling
inthree mainways. Thefirstapproachinvolves
developing machine-learning models called
emulators, which produce the sameresults as
conventional models without having to crank
through all the mathematical calculations.
Think of a conventional climate model as a
computer programthat can calculate wherea
ball will land on the basis of physical factors,
such as how hard the ball is thrown, where
itis thrown from and how fast it is spinning.
Emulators can be considered as equivalent

Physics-based model

Al CLIMATE MODEL
WORKS AT SPEED

In projections of global
surface air temperature
up to the year 2100,
output from the
QuickClim climate
emulator (right), a
machine-learning system,
closely matches that of
the physics-based
climate model it is trained
on (left). However,
QuickClim generates the

Difference
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output about one million
times faster.
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to asports player who learns the patternsin
all those modelled outputs and is then able
to predict, without crunching through all the
maths, where the ball will land.

In a 2023 study, climate scientist Vassili
Kitsios at the Commonwealth Scientific
and Industrial Research Organisation in
Melbourne, Australia, and his colleagues
developed 15 machine-learning models that
could emulate 15 physics-based models of
the atmosphere'. They trained their system,
called QuickClim, using the physical models’

“Machinelearning makes
thisscience alot more fun.
It’s vastly faster.”

projections of surface air temperature up to
theyear 2100 for two atmospheric carbon con-
centration pathways: alow and a high carbon
emission scenario. Training each model took
about 30 minutes on a laptop, says Kitsios.
Researchers then asked the QuickClim mod-
elstoforecasttemperaturesunder amedium
carbon emission scenario, which the models
had not seen during training. The results
closely matched those of the conventional
physics-based models (see ‘Al climate model
works at speed’).

Once trained with all three emissions
scenarios, QuickClim could quickly predict
how global surface temperatures would
change during the century under many carbon
emission scenarios —aboutone million times
faster thanthe conventional model could, says
Kitsios. “With traditional models, you have less

thanfive orso carbon concentration pathways
you can analyse. QuickClim now allows us to
do many thousands of pathways — because
it's fast,” he says.

QuickClim could one day help policymakers
by exploring multiple scenarios, which would
take conventional approaches simply too long
tosimulate. Models such as QuickClim will not
replace physics-based models, Kitsios says,
but could work alongside them.

Another team of researchers, led by atmos-
pheric scientist Christopher Bretherton
at the Allen Institute for Artificial Intelli-
gence in Seattle, Washington, developed
a machine-learning emulator for one
physics-based atmospheric model. Ina2023
preprint study?, the team first created a train-
ing dataset for the model, called ACE, by feed-
ing ten sets of initial atmospheric conditions
into a physics-based model. For each set, the
physics-based model projected how 16 varia-
bles, including air temperature, water vapour
and windspeed, would change over the next
decade.

After training, ACE was able to iteratively
use estimates from 6 hours earlier inits projec-
tions to make forecasts 6 hours ahead, over a
time spanofuptoadecade. Andit performed
well: better than a pared-down version of the
physics-based model that runs at half the
resolution to save on time and computing
power. In that comparison, ACE more accu-
rately predicted the state of 90% of the atmos-
phericvariables, ran100 times faster and was
100 times more energy-efficient.

Study author and climate scientist Oliver
Watt-Meyer at the Allen Institute for Artifi-
cial Intelligence says he was surprised. “l was
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impressed by the result. These early findings
suggest that we’llbe able to make these models
thatare veryfast,accurate and ableto probea
lot of different scenarios,” he says.

Firm foundations

Inthe second approach, researchers are using
Alin a more fundamental way, to power the
guts of climate models. These ‘foundation’
models can later be tweaked to perform
a wide range of downstream climate- and
weather-related tasks.

Foundation models hinge on the idea that
there are fundamental, possibly unknown,
patterns in the data that are predictive of the
future climate, says Grover. By picking up on
these hidden patterns, the hope is that founda-
tion models might be able to churnout better
climate and weather predictions than conven-
tional approaches can, he says.

Ina2023 paper?, Grover and researchers at
the tech giant Microsoft built the first such
foundation model, called ClimaX. It was
trained onthe output from five physics-based
climate models that simulated the global
weather and climate from 1850 to 2015, includ-
ing factors such as air temperature, air pres-
sure and humidity, simulated on timescales
fromhours toyears. Unlike emulator models,
ClimaX was not trained towards the specific
task of mimicking an existing climate model.

After this general training, the team fine-
tuned ClimaX to perform a wide range of
tasks.Inone, themodel predicted the average
surface temperature, daily temperature range
and rainfallworldwide frominput variables of
carbondioxide, sulphur dioxide, black carbon
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and methane levels. This task was proposed in
2022 as abenchmark for comparing Al climate
models, in a study by atmospheric physicist
Duncan Watson-Parris at the University of
California, San Diego, and his colleagues®.
ClimaX predicted the state of tempera-
ture-related variables better than did three
climate emulators built by Watson-Parris’s
team®. However, it performed less well than
thebest of these three emulatorsin predicting
rainfall, says Grover.

“Ilike the idea of foundation models,” says
Watson-Parris. But these early findings don’t
yet prove that ClimaX can outperform con-
ventional climate models, or that foundation
modelsareintrinsically superior to emulators,
he adds.

In fact, it will be difficult to convince peo-
ple that any machine-learning model can
outperform conventional approaches, says
Schneider. The true state of the future climate
is unknown and we can’t wait for decades to
see how well the models are performing, he
says. Testing climate models against past
climate behaviour is useful, but not a perfect
measure of how well they can predict afuture
that’s likely to be vastly different from what
humanity has seen before. Perhaps if models
get better at seasonal weather prediction,
they’ll be better at long-term climate predic-
tions, too, says Schneider. “But to my knowl-
edge, that’s not yet been demonstrated and
that’s no guarantee,” he says.

Moreover, itis hard to interpret the way in
which many of the Almodels work, aproblem
known as the black box of Al, which could
make it hard to trust them. “With climate
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Hybrid models that blend machine-learning and physics-based techniques have successfully
simulated snow cover and other small-scale processes.

712 | Nature | Vol 628 | 25 April 2024

projections, you absolutely need to trust the
model to extrapolate,” says Watson-Parris.

Best of both

Athirdapproachistoembed machine-learning
components inside physics-based models to
produce hybrid models — a sort of compro-
mise, says Schneider.

Inthis case, machine-learning models would
replace only the parts of conventional models
that work less well — typically the modelling
of small-scale, complex and important pro-
cesses such as cloud formation, snow cover
andriver flows. These are a “key sticking point”
instandard climate modelling, says Schneider.
“I'think the holy grail really is to use machine
learning or Al tools to learn how to represent
small-scale processes,” he says. Such hybrid
models could performbetter than purely phys-
ics-based models, while being more trustwor-
thy than models built entirely from Al, he says.

In this vein, Schneider and his colleagues
have built physical models of Earth’s atmos-
phere andland that contain machine-learning
representations of a handful of such small-
scale processes. They perform well, he says,
in tests of river-flow and snow-cover projec-
tions against historical observations®. “We’ve
found machine-learning models can be more
successful than physical models in simulat-
ing certain phenomena,” says Schneider.
Watson-Parris agrees with that assessment.

By the end of the year, Schneider and his
team hope to complete a hybrid model of the
oceanthat canbe coupled tothe atmosphere
and land models, as part of their Climate
Modeling Alliance (CliMA) project.

Similar efforts to create ‘digital twins’ of
Earth are being developed by NASA and the
European Commission. The European project,
called Destination Earth (DestinE), is entering its
second phaseinjunethisyear,inwhichmachine
learning will have a key role, says Florian
Pappenberger, who leads the forecast depart-
mentatthe European Centre for Medium-Range
Weather Forecasts in Reading, UK.

The ultimate goal, says Schneider, is to cre-
ate digital models of Earth’s systems, partly
powered by Al, that can simulate all aspects
ofthe weather and climate down tokilometre
scales, with great accuracy and at lightning
speed. We're not there yet, but advocates say
this targetis now in sight.

Carissa Wong is a freelance reporter in London.
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