Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • NEWS EXPLAINER

Why call it BA.2.12.1? A guide to the tangled Omicron family

Coloured transmission electron micrograph of SARS-CoV-2 coronavirus particles (blue) emerging from a cell cultured in a lab.

Before naming a new variant of the SARS-CoV-2 coronavirus, researchers assess whether it represents a new lineage on the virus’s family tree.Credit: National Institutes of Health/Science Photo Library

For the foreseeable future, the coronavirus SARS-CoV-2 will continue evolving into new variants that lead to waves of infections. In 2020 and 2021, the World Health Organization (WHO) announced the emergence of variants of concern by giving them names from the Greek alphabet. But this year, Omicron has remained in the spotlight, with members of its family — subvariants — fuelling surges as they evade antibodies that people have generated from previous infections and vaccines. For example, the Omicron subvariant BA.2.12.1 is gaining ground in North America, now accounting for about 26% of the SARS-CoV-2 genomes submitted to the GISAID data initiative, and BA.4 and BA.5 are spreading rapidly in South Africa, comprising more than 90% of genomes sequenced.

Given the subvariants’ increasing dominance, Nature spoke to researchers to make sense of the current wonky names, and to learn why the WHO hasn’t given them Greek monikers that could spur policymakers to take stronger action.

How do scientists first identify a variant?

SARS-CoV-2 acquires mutations as it replicates in cells. Technically, this means that millions of variants probably arise every day. But the majority of mutations don’t improve the virus’s ability to survive and reproduce, and so these variants are lost to time — outcompeted by fitter versions.

A small portion of variants do, however, gain traction. When this happens, researchers conducting genomic surveillance flag samples that all have the same set of distinct mutations. To find out whether these samples constitute a new branch on the SARS-CoV-2 family tree, they contact bioinformaticians who have established nomenclature systems for the virus. One popular group, called Pango, consists of about two dozen evolutionary biologists and bioinformaticians who compare the samples’ sequences with hundreds of others using phylogenetic software.

The group’s name derives from a software program called Pangolin, originally created by bioinformatician Áine O’Toole at the University of Edinburgh, UK. If the analysis suggests that the new samples derived from the same recent common ancestor, it means that they are a distinct lineage on the coronavirus tree. In determining whether to name the lineage, Pango considers whether the variants have appeared more frequently over time, and whether their mutations are in regions of the virus that might give it a competitive edge. At this point, a lineage label doesn’t indicate risk. Rather, it allows scientists to keep an eye on a variant and learn more.

“We want to name everything that jumps out at us at an early stage so that we can define it and track it, and see if it is growing quickly relative to other lineages,” says Andrew Rambaut, an evolutionary biologist at the University of Edinburgh and a member of Pango. “You probably won’t hear of most of the lineages we name,” he says, because they couldn’t compete with other versions of SARS-CoV-2 and have disappeared.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Nature 606, 446-447 (2022)

doi: https://doi.org/10.1038/d41586-022-01466-9

Subjects

Latest on:

Nature Careers

Jobs

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing

Search

Quick links