Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • CORRESPONDENCE

Preventing spillover as a key strategy against pandemics

Most new infectious diseases result from the spillover of pathogens from animals, particularly wildlife, to people. Spillover prevention should not be dismissed in discussions on how best to address pandemics (see Nature 596, 332–335; 2021).

The belief that we are powerless to prevent spillover is, unfortunately, endorsed by many in public health and government. Improved management of farmed animals, regulations on wildlife trade and conservation of tropical forests have all helped to prevent spillover and subsequent outbreaks, as well as boosting greenhouse-gas mitigation and wildlife conservation (see go.nature.com/2uqwx1u). Moreover, preventing spillover is cheap compared with the costs of a single pandemic (A. P. Dobson et al. Science 369, 379–381; 2020).

Outbreak containment measures will always be necessary, especially for the most vulnerable people in resource-limited settings, because spillover can never be completely eliminated. But if prioritized alongside post-spillover initiatives, outcomes will be more cost-effective, scientifically informed and equitable.

Nature 597, 332 (2021)

doi: https://doi.org/10.1038/d41586-021-02427-4

Competing Interests

The authors declare no competing interests.

Subjects

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing

Search

Quick links