Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • NEWS

CureVac COVID vaccine let-down spotlights mRNA design challenges

A volunteer is given an injection during CureVac clinical trial in Brussels, Belgium

A trial volunteer in Belgium recieves a dose of CureVac's vaccine.Credit: Yves Herman/Reuters/Alamy

Two vaccines made using messenger RNA (mRNA) have proved spectacularly successful at warding off COVID-19, but a third mRNA-based candidate has flopped in a final-stage trial, according to an initial report released this week. Researchers are now asking why — and some think that choices about the type of mRNA chemistry used might be to blame. Any insight could help to guide the future design of mRNA vaccines against COVID-19 or other diseases.

The company behind the beleaguered trial, CureVac, based in Tübingen, Germany, announced preliminary data on 16 June from a 40,000-person trial, which showed that its two-dose vaccine was just 47% effective at preventing disease.

CureVac’s mRNA vaccine was expected to be cheaper and to last longer in refrigerated storage than the earlier mRNA vaccines made by Pfizer–BioNTech and Moderna. Many had hoped that it could help to expand the reach of mRNA-based vaccines in lower-income countries, and European countries were expecting to order hundreds of millions of doses.

“I’m definitely surprised — and also disappointed,” says Philip Santangelo, a biomedical engineer at the Georgia Institute of Technology in Atlanta who has worked with many mRNA-focused companies, including CureVac.

He and others suspect that CureVac’s decision not to tweak the biochemical make-up of its mRNA, as Pfizer–BioNTech and Moderna did, might be behind its poor performance — although it is too early to know for sure.

Variant problem

CureVac executives put the poor results down to the high number of coronavirus variants — including emerging ones such as the Lambda variant first detected in Peru — circulating in the ten countries across Europe and Latin America where the company is running its trial. Of 124 COVID-19 cases for which scientists obtained a genetic sequence, only one was caused by the original version of SARS-CoV-2.

But the other mRNA vaccines have fared much better in the face of variants.

Researchers in the United Kingdom have reported, for instance, that the Pfizer–BioNTech shot offered 92% protection against symptomatic cases of COVID-19 caused by the Alpha variant (first identified in the United Kingdom) and 83% protection against the Delta variant (initially reported in India)1. A study in Qatar similarly found the vaccine to be around 90% effective against the Alpha strain and 75% effective against the Beta variant that emerged in South Africa2.

Those differences in efficacy have led trial investigators and other scientists to suggest that the problem is with the vaccine itself.

Dose of reality

“My best take is that the dose is the culprit,” says Peter Kremsner, an infectious-disease specialist at Tübingen University Hospital who is leading CureVac’s clinical studies.

In phase I testing, Kremsner and his colleagues evaluated doses ranging from 2 to 20 micrograms of mRNA per injection. At the higher dose levels, the vaccine caused too many side effects, with trial participants frequently complaining of problems such as severe headaches, fatigue, chills and injection-site pain.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Nature 594, 483 (2021)

doi: https://doi.org/10.1038/d41586-021-01661-0

References

  1. Sheikh, A., McMenamin, J., Taylor, R. & Robertson, C. Lancet https://doi.org/10.1016/S0140-6736(21)01358-1 (2021).

    Article  Google Scholar 

  2. Abu-Raddad, L. J., Chemaitelly, H. & Butt, A. A. N. Engl. J. Med. https://doi.org/10.1056/NEJMc2104974 (2021).

    PubMed  Google Scholar 

  3. Kremsner, P. et al. Preprint at MedRxiv https://doi.org/10.1101/2020.11.09.20228551 (2020).

  4. Karikó, K., Buckstein, M., Ni, H. & Weissman, D. Immunity 23, 165–175 (2005).

    Article  PubMed  Google Scholar 

Download references

Subjects

Latest on:

Nature Careers

Jobs

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing

Search

Quick links