Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • NEWS

‘It will change everything’: DeepMind’s AI makes gigantic leap in solving protein structures

T1037, part of a protein from (Cellulophaga baltica crAss-like) phage phi14:2, a virus that infects bacteria.

A protein’s function is determined by its 3D shape.Credit: DeepMind

An artificial intelligence (AI) network developed by Google AI offshoot DeepMind has made a gargantuan leap in solving one of biology’s grandest challenges — determining a protein’s 3D shape from its amino-acid sequence.

DeepMind’s program, called AlphaFold, outperformed around 100 other teams in a biennial protein-structure prediction challenge called CASP, short for Critical Assessment of Structure Prediction. The results were announced on 30 November, at the start of the conference — held virtually this year — that takes stock of the exercise.

“This is a big deal,” says John Moult, a computational biologist at the University of Maryland in College Park, who co-founded CASP in 1994 to improve computational methods for accurately predicting protein structures. “In some sense the problem is solved.”

The ability to accurately predict protein structures from their amino-acid sequence would be a huge boon to life sciences and medicine. It would vastly accelerate efforts to understand the building blocks of cells and enable quicker and more advanced drug discovery.

AlphaFold came top of the table at the last CASP — in 2018, the first year that London-based DeepMind participated. But, this year, the outfit’s deep-learning network was head-and-shoulders above other teams and, say scientists, performed so mind-bogglingly well that it could herald a revolution in biology.

“It’s a game changer,” says Andrei Lupas, an evolutionary biologist at the Max Planck Institute for Developmental Biology in Tübingen, Germany, who assessed the performance of different teams in CASP. AlphaFold has already helped him find the structure of a protein that has vexed his lab for a decade, and he expects it will alter how he works and the questions he tackles. “This will change medicine. It will change research. It will change bioengineering. It will change everything,” Lupas adds.

In some cases, AlphaFold’s structure predictions were indistinguishable from those determined using ‘gold standard’ experimental methods such as X-ray crystallography and, in recent years, cryo-electron microscopy (cryo-EM). AlphaFold might not obviate the need for these laborious and expensive methods — yet — say scientists, but the AI will make it possible to study living things in new ways.

The structure problem

Proteins are the building blocks of life, responsible for most of what happens inside cells. How a protein works and what it does is determined by its 3D shape — ‘structure is function’ is an axiom of molecular biology. Proteins tend to adopt their shape without help, guided only by the laws of physics.

For decades, laboratory experiments have been the main way to get good protein structures. The first complete structures of proteins were determined, starting in the 1950s, using a technique in which X-ray beams are fired at crystallized proteins and the diffracted light translated into a protein’s atomic coordinates. X-ray crystallography has produced the lion’s share of protein structures. But, over the past decade, cryo-EM has become the favoured tool of many structural-biology labs.

Scientists have long wondered how a protein’s constituent parts — a string of different amino acids — map out the many twists and folds of its eventual shape. Early attempts to use computers to predict protein structures in the 1980s and 1990s performed poorly, say researchers. Lofty claims for methods in published papers tended to disintegrate when other scientists applied them to other proteins.

Moult started CASP to bring more rigour to these efforts. The event challenges teams to predict the structures of proteins that have been solved using experimental methods, but for which the structures have not been made public. Moult credits the experiment — he doesn’t call it a competition — with vastly improving the field, by calling time on overhyped claims. “You’re really finding out what looks promising, what works, and what you should walk away from,” he says.

Infographic: Structure solver. DeepMind's AlphaFold 2 algorithm outperformed other teams at the CASP14 protein folding contest.

Source: DeepMind

DeepMind’s 2018 performance at CASP13 startled many scientists in the field, which has long been the bastion of small academic groups. But its approach was broadly similar to those of other teams that were applying AI, says Jinbo Xu, a computational biologist at the University of Chicago, Illinois.

The first iteration of AlphaFold applied the AI method known as deep learning to structural and genetic data to predict the distance between pairs of amino acids in a protein. In a second step that does not invoke AI, AlphaFold uses this information to come up with a ‘consensus’ model of what the protein should look like, says John Jumper at DeepMind, who is leading the project.

The team tried to build on that approach but eventually hit the wall. So it changed tack, says Jumper, and developed an AI network that incorporated additional information about the physical and geometric constraints that determine how a protein folds. They also set it a more difficult, task: instead of predicting relationships between amino acids, the network predicts the final structure of a target protein sequence. “It’s a more complex system by quite a bit,” Jumper says.

Startling accuracy

CASP takes place over several months. Target proteins or portions of proteins called domains — about 100 in total — are released on a regular basis and teams have several weeks to submit their structure predictions. A team of independent scientists then assesses the predictions using metrics that gauge how similar a predicted protein is to the experimentally determined structure. The assessors don’t know who is making a prediction.

AlphaFold’s predictions arrived under the name ‘group 427’, but the startling accuracy of many of its entries made them stand out, says Lupas. “I had guessed it was AlphaFold. Most people had,” he says.

Some predictions were better than others, but nearly two-thirds were comparable in quality to experimental structures. In some cases, says Moult, it was not clear whether the discrepancy between AlphaFold’s predictions and the experimental result was a prediction error or an artefact of the experiment.

AlphaFold’s predictions were poor matches to experimental structures determined by a technique called nuclear magnetic resonance spectroscopy, but this could be down to how the raw data is converted into a model, says Moult. The network also struggles to model individual structures in protein complexes, or groups, whereby interactions with other proteins distort their shapes.

Overall, teams predicted structures more accurately this year, compared with the last CASP, but much of the progress can be attributed to AlphaFold, says Moult. On protein targets considered to be moderately difficult, the best performances of other teams typically scored 75 on a 100-point scale of prediction accuracy, whereas AlphaFold scored around 90 on the same targets, says Moult.

About half of the teams mentioned ‘deep learning’ in the abstract summarizing their approach, Moult says, suggesting that AI is making a broad impact on the field. Most of these were from academic teams, but Microsoft and the Chinese technology company Tencent also entered CASP14.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Nature 588, 203-204 (2020)

doi: https://doi.org/10.1038/d41586-020-03348-4

Subjects

Latest on:

Nature Careers

Jobs

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing

Search

Quick links