Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Protein attachment to the membrane of a starfish egg cell occurs in rippling waves (video is roughly 100 times faster than actual speed). Credit: Fakhri Lab/MIT

Physics

How a starfish egg is like a quantum system

Waves that travel through an egg’s outer membrane echo those seen in physical systems at much smaller — and much larger — scales.

Some cellular proteins undergo reactions in waves that ripple across a cell’s membrane, displaying patterns of turbulence that resemble those seen throughout the physical world.

When bound to a cell membrane, the signalling protein Rho-GTP plays a part in the multistep process that leads a cell to divide. Proteins similar to Rho-GTP are found in a vast number of organisms, including vertebrates.

Nikta Fakhri at the Massachusetts Institute of Technology in Cambridge and her colleagues studied the concentrations of Rho-GTP on the cell membrane of a species of starfish called the bat star (Patiria miniata). The researchers used a fluorescent protein to label Rho-GTP in P. miniata egg cells and then made videos of the eggs under a microscope.

The results showed that the protein’s concentration changed in waves that propagated across the membrane. Swirling vortices of two distinct types appeared in the waves in pairs, interacting in much the same way as particles of opposite electrical charge.

Similar patterns are seen across the physical world, in phenomena ranging from atmospheric dynamics to quantum systems, the authors write.

Correction: An earlier version of this article said that cellular proteins move in waves across a cell’s surface.

More Research Highlights...

Plastic and other debris floats underwater in blue water

Plastic detritus from snacks and meals floats in the Red Sea. Marine sampling shows that food waste accounts for nearly 90% of plastic pollution at some locales. Credit: Andrey Nekrasov/Barcroft Media/Getty

Ocean sciences

Humanity’s fast-food habit is filling the ocean with plastic

Food bags, drink bottles and similar items account for the biggest share of plastic waste near the shore.
Conceptual artwork of a pair of entangled quantum particles.

An artist’s impression of ‘entangled’ particles, which share properties even at a distance. Entangled photons can be used to help secure a multi-party video meeting. Credit: Mark Garlick/Science Photo Library

Quantum information

Quantum keys dial up tamper-proof conference calls

A new experiment efficiently distributes the highly secure keys to four parties instead of the typical two.
Farmers harvest pineapples in a field.

Workers harvest pineapples in Lingao County, China. Less than one-third of the money spent on food eaten at home reaches farmers. Credit: Yuan Chen/VCG/Getty

Economics

Poor harvest: farmers earn a pitiful fraction of the money spent on food

The bulk of consumer food spending around the world ends up in the coffers of distributors, processors and other parties beyond the farm gate.
A woman wearing a protective face mask splashes her hands in a jet of water

A pedestrian seeks relief from searing temperatures in Spain, where a high proportion of heat-related deaths have been linked to climate change. Credit: SALAS/EPA-EFE/Shutterstock

Climate change

More than one-third of heat deaths blamed on climate change

Warming resulting from human activities accounts for a high percentage of heat-related deaths, especially in southern Asia and South America.
Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing

Search

Quick links