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RPA-coated single-stranded DNA as a platform for 
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The Replication Protein A (RPA) complex is an essential regulator of eukaryotic DNA metabolism. RPA avidly 
binds to single-stranded DNA (ssDNA) through multiple oligonucleotide/oligosaccharide-binding folds and coordi-
nates the recruitment and exchange of genome maintenance factors to regulate DNA replication, recombination and 
repair. The RPA-ssDNA platform also constitutes a key physiological signal which activates the master ATR kinase 
to protect and repair stalled or collapsed replication forks during replication stress. In recent years, the RPA com-
plex has emerged as a key target and an important regulator of post-translational modifications in response to DNA 
damage, which is critical for its genome guardian functions. Phosphorylation and SUMOylation of the RPA complex, 
and more recently RPA-regulated ubiquitination, have all been shown to control specific aspects of DNA damage 
signaling and repair by modulating the interactions between RPA and its partners. Here, we review our current un-
derstanding of the critical functions of the RPA-ssDNA platform in the maintenance of genome stability and its regu-
lation through an elaborate network of covalent modifications.
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Introduction

The single-stranded DNA (ssDNA)-binding protein 
complex Replication Protein A (RPA) plays crucial roles 
in virtually all aspects of eukaryotic DNA metabolism. 
Originally identified as an essential factor for the in vitro 
replication of simian virus 40 (SV40) DNA, it has since 
been recognized as a central regulator of the genome 
maintenance machinery [1-3]. Indeed, RPA is a bona fide 
genome guardian which functions during DNA replica-
tion, recombination and repair and also acts as a key sen-
sor to elicit the DNA damage response (DDR) following 
cellular exposure to genotoxic stresses [4-7].

RPA participates in both the initiation and elongation 
steps of DNA replication by enhancing the assembly and 
recruitment of DNA polymerases α, δ, and ε, by pro-

moting polymerase switch on the lagging strand and by 
coordinating the processing of Okazaki fragments [8-11]. 
Problems in DNA replication and other types of genotox-
ic stresses are signaled throughout the cell cycle via the 
detection of persistent stretches of RPA-ssDNA by the 
ATR kinase and its obligatory partner ATRIP [12]. ATR 
activation on RPA-ssDNA elicits cell cycle checkpoints, 
stabilizes stalled forks, promotes the repair of DNA 
damage and generally rewires the cell for the optimal 
maintenance of genome integrity [13, 14]. RPA is also 
implicated in a number of DNA repair pathways, playing 
important roles during nucleotide excision repair (NER), 
base excision repair (BER), mismatch repair (MMR) and 
homologous recombination (HR) [15-17]. Furthermore, 
RPA has been suggested to function at telomeres in both 
yeast and human cells [18, 19].

The versatility of RPA bound to ssDNA (RPA-ssDNA) 
in DNA metabolism stems from the biochemical proper-
ties of this nucleoprotein structure, as well as its ability 
to orchestrate the recruitment, activation and exchange 
of a large number of proteins whose combined activi-
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ties permit the protection and propagation of eukaryotic 
genomes [5-7]. Although RPA interacts with multiple 
genome maintenance proteins to regulate DNA metab-
olism, the molecular mechanisms that allow RPA to 
participate in specific DNA metabolic pathways are not 
well understood. Post-translational modifications of the 
RPA complex particularly in response to DNA damage 
have emerged as critical regulators of the many functions 
of RPA-ssDNA. Here, we review recent advances in our 
understanding of the post-translational regulation of the 
RPA-ssDNA platform and its roles in the maintenance of 
genome stability.

The ssDNA-binding domains of RPA

RPA is a heterotrimeric complex composed of the 
RPA70, RPA32 and RPA14 subunits, which binds 
to ssDNA with very high affinity (Kd ~10−9-10−10 M) 
through multiple oligonucleotide/oligosaccharide-bind-
ing (OB) fold domains [20]. These domains, commonly 
referred to as DNA-binding domains (DBDs) A, B, C 
and D, are located on the RPA70 (A, B, C) and RPA32 (D) 

subunits of the complex (Figure 1). RPA associates with 
ssDNA with a defined polarity (5′→3′) using two differ-
ent modes of binding. In the low-affinity binding mode, 
RPA uses only its DBD-A and -B to occlude 8 nucleo-
tides (nts) of ssDNA [21, 22]. In its high-affinity binding 
mode, RPA uses DBD-A through -D to bind up to 30 nts 
of ssDNA per RPA complex [23-30]. These two different 
binding modes appear to act sequentially to facilitate the 
initial association of RPA with ssDNA while also allow-
ing its removal by DNA processing factors during DNA 
transactions [5]. Once bound to ssDNA, RPA protects it 
against breakage and acts as a platform that coordinates 
the arrival and departure of many genome maintenance 
factors [31]. There are at least three protein-protein inter-
action surfaces on the RPA complex which endow it with 
the flexibility required to direct multiple facets of DNA 
metabolism (Table 1).

DBD-A and -B of RPA70

In addition to their ssDNA-binding activity, DBD-A 
and -B can associate with other proteins. These pro-

Figure 1 Schematic representation of the RPA complex. The OB folds A-F are shown as light blue rectangles, the winged-he-
lix domain of RPA32 is in red. OB folds A-D (DBDs A-D) support the ssDNA-binding activity of the RPA complex. Hetero-
trimerization of the RPA complex is mediated by OB folds C of RPA70, D of RPA32 and E of RPA14, which are brought 
together through a triple helix bundle (dashed arrows) [23]. The phosphorylated residues found in the N-terminus of RPA32 
are represented in bold along with their respective kinases. Solid and dashed arrows indicate major or minor contributions to 
specific phosphorylation events by the various kinases. SUMOylated residues in RPA70 are represented as orange circles. 
This figure was inspired by Fanning et al. [5]. 
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Table 1 Known interactors of the RPA complex
           Protein Name                                                     Interaction with RPA subunits                                                          References
AID RPA32                                                                                  [152]
ATR, ATRIP RPA70 N [12]
BID RPA70 N [52]
BLM RPA70 DBD-A/B [153, 154]
BRCA2 Unknown [155]
DNA2 RPA70 [156, 157]
DNA-PKcs RPA70 [158]
E1 papillomavirus protein RPA70 [33]
EXO5 RPA70 [159]
FACT (SPT16/SSRP1) RPA70 [160, 161]
FANCJ RPA70 [162]
FBH1 Unknown [143]
HLTF Unknown [163]
HSF1 RPA70 [160]
MRE11A, RAD50, NBS1 RPA70 N [34, 164-166]
NCL RPA14 [167]
PP2A Unknown [122]
PP4 (PP4C/PP4R2) Unknown [106]
POL α-primase RPA70 [168]
POLD1/D2 RPA70 [11]
PRP19 complex, PRP19/BCAS2 RPA70 N, DBD-C [49, 138]
p53 RPA70 N [37, 169, 170]
PRIM-POL RPA70 [171]
RAD17 RPA70 N [46, 48, 172]
RAD51 RPA70 DBD-A [173]
RAD52 RPA70, RPA32 WH [80, 174]
RNF4 Unknown [144]
RFC complex, p140(RFC1)/p40(RFC2)/p38(RFC3) RPA70 [11]
RFWD3 RPA32 WH [140, 141]
SMARCAL1/HARP RPA70 DBD-A, RPA32 WH [70-74]
SV40 T antigen RPA70 DBD-A and -B, RPA32 WH [68, 175, 176]
Tipin RPA32 WH [83, 177]
UNG2 RPA32 WH [178]
WRN RPA70 DBD-A/B [179-181]
XPA                                                                                          RPA70 DBD-A, RPA32WH                                               [64, 82, 182-184]
XPG Unknown [183, 185, 186]
ERCC1-XPF RPA70, RPA32 [185-188]
53BP1 Unknown [118]

tein-protein interactions are regulated by the different 
DNA-binding modes of RPA [32]. For example, the 
SV40 T-antigen (TAg), a DNA helicase, interacts with 
RPA residues that are accessible when RPA is bound to 
DNA in the 8-nt binding mode but masked by ssDNA 
in the 30-nt binding mode. Additionally, conformational 
changes on DBD-A and -B during the transition from 8- 

to 30-nt binding mode also affect the binding surface of 
TAg and other factors on RPA [25, 32, 33]. These obser-
vations suggest a model in which the TAg first unwinds 
a short stretch of DNA at the replication origin and ac-
tively loads RPA in its 8-nt binding mode. The loading of 
RPA would then increase the unwinding activity of TAg 
and promote the transition into the 30-nt binding mode, 
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leading to the subsequent dissociation of the TAg-RPA 
complex [32].

This type of “handoff” mechanism constitutes an im-
portant way of regulating the interactions of RPA with 
its partners. The handoff mechanism on RPA-ssDNA 
was also elegantly shown to promote the switch from 
DNA polymerase α-primase to Pol δ during eukaryotic 
DNA replication [11]. Successive competition between 
different DNA processing proteins and ssDNA for the 
same binding surfaces on RPA can allow these factors to 
carry out specific functions as ssDNA is extended. Addi-
tionally, binding of proteins to different parts of the RPA 
complex may trigger conformational changes that would 
favor its further recognition by other factors and thus 
drive the completion of genome maintenance pathways 
[5]. Consistent with these possibilities, we and others 
have recently shown that ATR is activated by RPA-ssD-
NA in distinct ways toward Chk1 and RPA32 [34, 35]. 
In response to camptothecin (CPT) treatment, Chk1 and 
RPA32 are phosphorylated by ATR sequentially. Further-
more, CtIP, a protein critical for DNA end resection in 
human cells, is important for RPA32 phosphorylation but 
only plays a minor role in Chk1 phosphorylation [34-36]. 
These results suggest that different amounts of RPA-ssD-
NA are required for activating ATR toward Chk1 and 
RPA32. It is tempting to speculate that the handoff mech-
anism may allow RPA-ssDNA to coordinate checkpoint 
activation and DNA repair at sites of DNA damage, and 
regulate distinct DNA repair events spatially and tempo-
rally.

The N-terminal OB fold of RPA70

In contrast to DBDs A-C, the DBD-F located at the 
N-terminus of RPA70 does not significantly participate 
in the ssDNA-binding activity of the RPA complex but 
instead constitutes a key protein-protein interaction hub 
with crucial roles in DNA damage signaling [37-41]. The 
particular importance of this region for DDR activation 
is underscored by the Saccharomyces cerevisiae t-11 mu-
tant, which is proficient for DNA replication but defective 
in DNA repair and checkpoint activation [42-45]. The 
t-11 mutant harbors a K-to-E mutation on the basic sur-
face of the RPA70 N-terminus, which impairs its ability 
to interact with Ddc2/ATRIP and Ddc1/RAD9 and recruit 
them to damage sites [12, 46-48]. Analogous mutations 
on the human RPA70 N-terminus also lead to a defective 
G2/M checkpoint and abrogate its interaction with mul-
tiple partners many of which participate in ATR kinase 
activation including ATRIP, RAD9, the MRN (Mre11-
Rad50-Nbs1) complex, BID and the PRP19 complex [34, 
41, 49-52].

The RPA70 N-terminus is thus a cornerstone of the 
DDR and functions as a checkpoint activation module in 
multiple ways. First, it recruits the ATR-ATRIP kinase 
complex to damage sites. Second, it facilitates the Rad17/
RFC-mediated loading of the Rad9-Hus1-Rad1 (9-1-1) 
checkpoint clamp onto ssDNA-dsDNA junctions, which 
promotes the interaction of 9-1-1 with the ATR activator 
TopBP1 [53-61]. Third, it brings in the MRN complex, 
which also interacts with TopBP1 and ATR-ATRIP [34, 
41, 62, 63]. And fourth, it nucleates additional factors 
such as the E3 ubiquitin ligase PRP19 to potentiate ATR 
activation on RPA-ssDNA (see Figure 2 and below).

The winged helix domain of RPA32

The winged helix (WH) domain at the RPA32 C-ter-
minus also interacts with many genome maintenance 
proteins [64] (Table 1). In agreement with a function of 
this domain in genome protection, yeast truncation mu-
tants lacking the C-terminal domain of Rfa2 (hRPA32) 
are hypersensitive to DNA damaging agents and exhibit 
mutator and hyper-recombination phenotypes [65, 66]. 
The RPA32 C-terminus also functions in SV40 DNA rep-
lication at least partly through its direct interaction with 
the TAg [67, 68].

RAD52, TIPIN, XPA, UNG2 and SMARCAL1 all in-
teract with the RPA32 WH domain through similar short 
RPA-interacting peptides. The RPA32 WH is thus poten-
tially involved in multiple DDR pathways as UNG2 func-
tions in BER, XPA in NER, Rad52 in HR, and TIPIN and 
SMARCAL1 are both involved in replication fork protec-
tion and restart [69-79]. These interactions are all func-
tionally meaningful as abrogation of the RPA-interacting 
domain on Rad52 rendered it unable to enhance HR when 
overexpressed in monkey cells, and truncation of the WH 
domain of RPA32 or deletion of the RPA-binding motif 
of XPA strongly impeded NER [80-82]. Additionally, 
SMARCAL1 mutants that cannot bind RPA are deficient 
in their genome maintenance functions [69-71]. Finally, a 
TIPIN RPA-binding motif mutant cannot support efficient 
CHK1 phosphorylation during replication stress [83].

Since all the protein-protein interaction domains of 
RPA have multiple partners which function in many 
very different processes, the assembly and disassembly 
of genome maintenance factors on RPA-ssDNA is un-
likely to be solely controlled by the competition among 
RPA-binding proteins. Rather, the protein interactions of 
RPA-ssDNA are regulated by additional context-specific 
mechanisms. Among these mechanisms, post-translation-
al modifications of the RPA complex may direct the spe-
cific functions of RPA-ssDNA in different sub-pathways 
of the DDR.
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Phosphorylation of the RPA complex

The most studied post-translational modification of the 
RPA complex is the phosphorylation of the RPA32 N-ter-

minus first described more than 20 years ago [84]. RPA32 
becomes phosphorylated at the G1/S phase transition and 
is subsequently dephosphorylated after mitosis during an 
unperturbed cell cycle [84, 85]. These cell cycle-regulated 
phosphorylation events occur on consensus S/T-P CDK 
sites at serine residues S23 and S29 (Figure 1). Recently, 
phospho-specific antibodies were used to determine that 
phosphorylation occurs on S23 during S-phase, whereas 
both S23 and S29 are phosphorylated in mitosis [86]. It 
has also been established that cyclin A-Cdk2 phosphor-
ylates RPA during S-phase while cyclin B-Cdk1 acts on 
RPA during mitosis [87-89].

In addition to these cell cycle-regulated phosphor-
ylation events, the N-terminal part of RPA32 is phos-
phorylated at a number of other residues in response to 
DNA damage (Figure 1) [90-92]. In vitro SV40 DNA 
replication or the addition of ssDNA to S-100 extracts 
from HeLa cells can induce robust RPA phosphorylation, 
suggesting that ssDNA binding by the RPA complex is a 
prerequisite for its modification [93]. In agreement with 
this, DNA damaging agents that stall or break replication 
forks and thus rapidly generate high levels of RPA-ssD-
NA (e.g., ultraviolet light (UV), hydroxyurea (HU), CPT) 
strongly induce RPA32 hyperphosphorylation (phosphor-
ylation at five or more sites), whereas agents that induce 
double-stranded breaks (DSBs) throughout the cell cycle 
such as ionizing radiation (IR) or bleomycin induce this 
modification modestly [94].

DNA damage-induced RPA hyperphosphorylation 
depends on the activity of the three DDR kinases of the 
phosphoinositide 3-kinase (PI3K)-like protein kinase 
(PIKK) family: ATM, ATR and DNA-PK (Figure 1). 
Crosstalk between these various kinases during RPA 
phosphorylation is complex and depends on the particular 
type of stress that is imposed on the cells [7, 95]. It was 
suggested that the phosphorylation of RPA32 at S33 is 
largely, if not exclusively, an ATR-specific event, where-
as the phosphorylation at S4/S8 is mainly mediated by 
DNA-PK [34, 94, 96-99]. In response to CPT-induced 
replication-associated DSBs, RPA32 is sequentially 
phosphorylated by ATR at S33 and DNA-PKs at S4/S8 
[34]. In the absence of ATR activity, HU induces gradual 
accumulation of ssDNA and eventually depletion of nu-
clear pools of RPA, and thus replication catastrophe [31]. 
During replication catastrophe, RPA32 is phosphorylated 
at T21 and S4/S8.

Priming phosphorylation events that promote further 
modification of adjacent residues are common in signal-
ing pathways [100]. There is evidence for such interde-
pendency between phosphorylation sites on RPA32. Cell 
cycle-dependent phosphorylation of RPA32 is required 
for efficient damage-induced phosphorylation. Indeed, 

Figure 2 DNA damage signaling on RPA-ssDNA. RPA-ssDNA 
elicits DNA damage signaling by recruiting the ATR-ATRIP ki-
nase and the PRP19 complex to trigger a phosphorylation-ubiq-
uitination feed-forward loop that activates ATR-ATRIP. The 
kinase activity of ATR is required for efficient recruitment of the 
PRP19 complex onto RPA-ssDNA. PRP19 then exerts its ubiqui-
tin ligase activity on the RPA-ssDNA platform to facilitate further 
recruitment of ATR-ATRIP and autophosphorylation of ATR. In 
parallel, RPA-ssDNA directs the loading of the 9-1-1 clamp by 
the Rad17-RFC2-5 complex onto adjacent ssDNA-dsDNA junc-
tions. This allows the recruitment of the ATR activator TopBP1 
and of Rhino, which potentiate ATR-ATRIP kinase activity to pro-
tect replication forks and maintain genomic stability. Phosphory-
lation and ubiquitination events are depicted as green and white 
circles, respectively.
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high doses of ionizing radiation can induce RPA hyper-
phosphorylation, but it is reduced by mutations of the 
CDK-targeted S23 and S29 to alanines (S23/29A) [90]. 
CPT-induced hyperphosphorylation was also strongly 
impaired in RPA32 S23/29A or in cells exposed to the 
CDK inhibitor roscovitine [101]. Additional support for 
sequential RPA phosphorylation in response to damage 
comes from the fact that phosphorylation at residues 
T21 and S4/S8 is detected only in the hyperphosphor-
ylated form of RPA, suggesting that these events occur 
after earlier priming phosphorylation at S29 and S33 
[101]. Crosstalk is also a prominent feature between 
PIKK-targeted sites [97, 98]. Somewhat unexpectedly, 
phosphorylation of the consensus CDK target sites on 
RPA32 is induced following DNA damage [91]. Interest-
ingly, mutation of T21 and S33 residues strongly reduced 
CPT-induced phosphorylation of S29 [101]. This sug-
gests a model whereby CDK-dependent phosphorylation 
of RPA32 promotes damage-induced phosphorylation 
by PIKKs, which feeds back onto CDK phosphorylation 
sites ultimately promoting robust RPA hyperphosphory-
lation.

RPA phosphorylation and DNA replication

The role for RPA phosphorylation in DNA replication 
has been investigated by a number of studies. Truncation 
of the N-terminal part of RPA32 did not impede SV-40 
DNA replication in vitro [67]. Additionally, no growth 
defects were observed in cell lines expressing RPA32 
Ala7, a mutant in which seven RPA32 phosphorylation 
sites (S4/8/11/12/13/33A/T21A) are mutated to alanines, 
drastically reducing the levels of UV- and HU-induced 
RPA phosphorylation [96]. However, cells expressing an 
RPA32 mutant lacking S23 and S29 accumulated in S 
and G2 in the absence of exogenous stress, suggesting a 
role for CDK-mediated phosphorylation of RPA during 
normal cell cycle progression in vivo [101].

There is also evidence that hyperphosphorylation of 
RPA prevents its association with the replication machin-
ery. For instance, UV light-induced RPA phosphorylation 
correlates with a decrease in DNA replication [92]. More-
over, endogenously phosphorylated RPA does not colo-
calize with sites of DNA synthesis and phosphomimetic 
RPA mutants associate poorly with replication factories 
[96, 102]. Nonetheless, phosphomimetic RPA mutants 
are still able to relocalize to damage-induced foci, sug-
gesting that phosphorylation of RPA might be important 
to redirect its activities from DNA replication to DNA 
repair and genome protection [102]. Phosphorylation of 
RPA also appears to be important for the maintenance 
of telomere length. In yeast, an Rfa2 mutant lacking 40 

amino acids at its N-terminus had severely shortened 
telomeres. Mechanistically, the defect was caused by 
a decrease in the recruitment of the telomerase subunit 
Est1 to telomeres [18]. Whether RPA phosphorylation 
participates in telomere maintenance in mammalian cells 
is currently unknown. It should be noted that many of the 
previous studies on RPA phosphorylation used RPA32 
mutants lacking some or all of the N-terminal phosphory-
lation sites. Proteomic studies have revealed that the RPA 
complex is phosphorylated at additional sites. Whether 
the phosphorylation events outside of the RPA32 N-ter-
minus are functionally important remains to be tested.

RPA phosphorylation and the DDR

The role for RPA32 phosphorylation in DNA repair 
has also been investigated. An increase in the persistence 
and intensity of γ-H2AX foci following CPT or bleo-
mycin treatment was observed in cells expressing only 
the S23/29A mutant [101]. These mutant cells showed 
increased apoptosis when treated with CPT or bleomycin 
during mitosis. Furthermore, the S23/29A cells had less 
RAD51 chromatin loading after being treated with CPT 
or bleomycin in mitosis and released, suggesting that 
phosphorylation of RPA32 may regulate the formation 
of RAD51 filaments and the HR repair pathway [103]. 
Another mutant of RPA32, S33A/T21A had decreased 
DNA synthesis and increased accumulation of ssDNA 
after HU treatment. S33A/T21A also inhibited the re-
covery of DNA synthesis after genotoxic stress and was 
more sensitive to HU, indicating that RPA phosphory-
lation at stalled forks alleviates replication stress [97]. 
Using DNA fiber analysis, a recent study showed that the 
S23/29A and S33A/T21A mutants were defective in rep-
lication fork progression in the presence of HU and after 
HU release [104]. These two mutants were also defective 
in the proper nuclear localization of PALB2 and BRCA2 
in HU-treated cells. Cells expressing an RPA32 mutant 
lacking seven phosphorylation sites (RPA32 Ala7: S4A, 
S8A, S11A, S12A, S13A, T21A and S33A) showed de-
creased RAD51 foci formation and HR after long HU 
treatment but not after IR [105], further implicating RPA 
phosphorylation in DNA repair. In contrast, cells express-
ing the S4/8A mutant had a slightly increased frequency 
of UV-induced sister chromatid exchange and modestly 
increased IR-induced RAD51 foci formation, suggest-
ing that DNA-PK-dependent RPA phosphorylation is 
inhibitory to HR in these contexts [94]. Furthermore, 
phosphomimetic S8D and S33D mutations of RPA32 
interfere with HR in the DR-GFP assay [106]. Together, 
these findings suggest that the phosphorylation of differ-
ent sites of RPA32 may affect HR differently, and these 
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effects may be context specific. 
In addition to its role in DNA repair, RPA phosphor-

ylation is also implicated in the checkpoint response. 
Cells expressing the S33A/T21A mutant are defective in 
ATR-dependent inhibition of DNA synthesis after UV 
irradiation, suggesting a role for RPA phosphorylation 
in the S-phase checkpoint [96]. Additional support for 
a role of RPA phosphorylation in checkpoint regulation 
comes from RPA phosphomimetic mutants containing 
S8/23/29/33D mutations, which showed stronger inhi-
bition of DNA synthesis following γ-irradiation. These 
cells were also defective in RAD51 foci formation and 
HR repair and were more sensitive to CPT, suggesting 
that both phosphorylation and the timely dephosphor-
ylation of RPA32 are required for genome stability 
[106]. Phosphorylation of S4/8 also contributes to G2/
M and S-phase checkpoint activation and the repair of 
etoposide-induced damage [94, 98]. For example, the 
S4/8A mutant is defective in Chk1, Mre11 and TopBP1 
phosphorylation in response to etoposide [98]. Recent-
ly, it was shown that cells expressing the S4/8A mutant 
restart replication prematurely during the recovery from 
etoposide-induced DNA damage, indicating a defect in 
sustaining the proper checkpoint response [107]. Cells 
lacking DNA-PKcs or expressing a kinase-inactive 
DNA-PKcs mutant also had decreased Chk1 phosphory-
lation, thereby implicating DNA-PK in ATR activation. 
A role for DNA-PK in ATR activation was also recently 
demonstrated on short-gapped ssDNA in human cell-free 
extracts and proposed to stem from its ability to promote 
both RPA and TopBP1 phosphorylation [108]. However, 
the RPA32 Ala7 mutant did not display a defect in Chk1 
phosphorylation after UV, HU or IR treatments, although 
cells expressing the mutant failed to inhibit DNA syn-
thesis after UV damage [96]. It is possible that the role 
for RPA phosphorylation in ATR activation is context 
specific. Alternatively, the phosphorylation of RPA32 by 
different kinases may have opposing effects on ATR acti-
vation.

RPA phosphorylation and protein-protein interac-
tions

Binding between phospho-recognition motifs such as 
the Forkhead associated (FHA) or BRCT (BRCA1 C-ter-
minal) domains and phosphorylated proteins plays a cru-
cial role in cell cycle regulation and DNA damage sig-
naling and repair [109]. Phospho-dependent protein com-
plex formation underlies the γ-H2AX chromatin-based 
axis of the DDR and participates in the elaboration of 
multiple repair pathways [110, 111]. Hyperphosphoryla-
tion of the RPA complex also modulates its interactions 

with other proteins and nucleic acids.
Phosphorylated RPA obtained by incubation of recom-

binant human RPA complexes with HeLa nuclear ex-
tracts has a decreased affinity for purine-rich ssDNA and 
undamaged dsDNA, but showed enhanced binding to 
cisplatin-damaged dsDNA compared with non-phosphor-
ylated RPA [112]. Similarly, phospho-RPA purified from 
mitotic cells had intact ssDNA binding but decreased 
dsDNA binding [113]. Phosphomimetic RPA complex 
was also shown to have a decreased helix destabilization 
activity [114].

Phosphorylation of RPA32 can negatively impact its 
interactions with other proteins. Phospho-RPA has an 
impaired interaction with DNA polymerase α and a de-
creased ability to support SV40 DNA replication [113]. 
Mitosis-specific phosphorylated RPA has defective in-
teractions with ATM, DNA-PK and DNA polymerase α 
but still binds to the NER factor XPA [113].  Phospho-
mimetic RPA also has a weakened interaction with the 
MRN complex possibly through a competition between 
MRN and the negatively charged phospho-RPA32 for 
the basic cleft of RPA70 N-terminus [41, 114]. Such 
competition was also reported between p53 and a phos-
phomimetic peptide of the RPA32 N-terminus [37]. In 
agreement with this, hyperphosphorylated RPA32 shows 
an abrogated interaction with p53 in an ATR-, ATM- and 
DNA-PK-regulated manner [115, 116]. It has also been 
reported that CPT treatment leads to the dissociation 
of an RPA-DNA-PK complex concomitantly with RPA 
phosphorylation and a decrease in DNA synthesis [117]. 
Association between RPA and 53BP1 is also disrupted 
after CPT treatment, although the significance of this im-
paired interaction is unclear [118].

RPA phosphorylation can also positively regulate its 
interactions with other proteins. The RAD51 and RAD52 
HR proteins were shown to associate preferentially with 
phosphorylated RPA both in vivo and in vitro [119]. 
Whether these interactions are directly mediated by 
phosphorylation of RPA is still unclear. The interaction 
between the MRN complex and RPA was also shown to 
be phosphatase sensitive, but the RPA-interacting motif 
of NBS1 lies outside of its BRCT and FHA domains, 
and the Mre11-RPA interaction is not mediated by a pu-
tative phospho-binding domain [34, 50, 62, 120]. The 
ATR kinase and the 9-1-1 checkpoint clamp also exhibit 
a preference for phospho-RPA [119, 121]. Moreover, the 
PRP19 E3 ubiquitin ligase, which drives ATR-ATRIP 
recruitment and activation on RPA-ssDNA, interacts 
preferentially with hyperphosphorylated RPA. Indeed, 
the RPA-PRP19 interaction is facilitated by the ATR ki-
nase, which results in a feed-forward amplification loop 
that potentiates ATR activation [49]. These data show 
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that in concordance with roles for RPA phosphoryla-
tion in checkpoint activation and DNA repair, specific 
components of both the DDR signaling and HR repair 
pathways associate preferentially with phospho-RPA. A 
recent study suggested that the RPA complex phosphor-
ylated by cyclin B-Cdc2 in vitro promoted the binding 
of PALB2 to ssDNA in cell extracts [104]. However, 
despite all these tantalizing links, it is still unclear which 
of the many protein-protein interactions occurring on 
the RPA-ssDNA platform are directly mediated by RPA 
phosphorylation.

Dephosphorylation of RPA

The defects in DNA repair in cells expressing phos-
phomimetic RPA mutants suggest that RPA dephosphor-
ylation is important to successfully preserve genome 
integrity. Two different phosphatases seem to regulate 
RPA dephosphorylation in response to DNA damage [106, 
122]. Interference with the serine/threonine phosphatase 
PP2A caused persistent RPA32 phosphorylation and 
increased sensitivity to HU-induced replication stress. 
Consistent with the phosphomimetic RPA32 T21D/S33D 
mutant phenotypes, PP2A-knockdown cells were also 
impaired in the resolution of HU-induced fork damage 
but not defective in checkpoint activation [122]. Anoth-
er serine/threonine phosphatase, PP4, interacts with the 
RPA complex via its regulatory subunit PP4R2 in a dam-
age-dependent fashion to regulate the level of RPA phos-
phorylation [106]. PP4 limits the levels of RPA32 hyper-
phosphorylation, which occurs following CPT treatment. 
PP4C and PP4R2 downregulation also decreased HR 
efficiency as measured by the I-Sce-I DR-GFP assay and 
the repair of CPT-induced DSBs. Recombination and 
repair defects were also observed in cells expressing the 
phosphomimetic RPA32 S8/23/29/33D mutant. It is note-
worthy that the dephosphorylation of RPA32 following 
HU treatment did not depend on PP4, and CPT-induced 
hyperphosphorylation was not increased by PP2A down-
regulation [106, 122]. These results raise the possibility 
that different types of DNA damage may mobilize spe-
cific protein phosphatases to modulate the DDR on the 
RPA-ssDNA platform.

SUMOylation of RPA

Recent evidence shows that upon DNA damage both 
the yeast and human RPA complexes become SUMOy-
lated [123-126]. In yeast, the SUMOylation of RPA was 
demonstrated by SUMO pull-down under denaturing 
conditions [124, 125]. In human cells, treatment with 
CPT causes a dissociation of the SENP6 deSUMOylase 

from RPA70, leading to accumulation of a modified form 
of RPA70 that was recognized by anti-SUMO-2/3 anti-
bodies [123]. The modified amino acids on RPA70 were 
mapped to lysine residues 449 and 577 (Figure 1). Mech-
anistically, SUMOylation of DNA repair proteins appears 
to trigger the assembly of macromolecular complexes 
through SIM (SUMO-Interacting Motif)-SUMO interac-
tions between the various components of the complexes 
[124]. RPA70 SUMOylation increased its interaction 
with RAD51 and enhanced the RAD51 ATPase activity. 
Replacement of endogenous RPA70 with non-SUMOy-
latable mutants showed that SUMOylation of this RPA 
subunit promotes RAD51 foci formation and DNA repair 
through HR. Additionally, cells expressing the K449R/
K577R RPA70 mutant had increased sensitivity to CPT, 
demonstrating the importance of RPA complex SUMOy-
lation for the maintenance of genomic stability. Inter-
estingly, recruitment of RAD51 to sites of damage was 
recently shown to require a SIM domain [127]. Addition-
ally, the RPA complex may also have SUMO-recognition 
capacity. Yeast Rfa1 seems to contain at least two pu-
tative SIMs, one of which can bind poly-SUMO chains 
in vitro [124]. SUMOylation of proteins may also be 
achieved as part of hierarchical cascades of post-transla-
tional modifications that confer increased specificity to 
signaling pathways [128]. For example, SUMOylation 
has been shown to trigger recognition of substrates by 
SUMO-Targeted Ubiquitin Ligases (STUbLs) leading 
to the degradation of SUMOylated proteins and mainte-
nance of the homeostasis of the SUMO pathway [129].

Ubiquitination of the RPA complex

All three subunits of the RPA complex are ubiquitinat-
ed following DNA damage [49, 130]. We recently carried 
out a proteomic screen for sensors of RPA-ssDNA and 
identified the PRP19 E3 ubiquitin ligase complex as a 
direct interactor of the RPA complex in response to DNA 
damage [49]. The PRP19 complex is an important reg-
ulator of pre-mRNA splicing and also plays key roles in 
the DDR [131-136]. It is composed of PRP19, a U-box 
family ubiquitin ligase, and three other core compo-
nents, CDC5L, BCAS2 and PLRG1 [137]. Both PRP19 
and BCAS2 interact directly with the RPA complex and 
this interaction tethers the PRP19 complex to sites of 
damage [49, 138]. Functionally, PRP19 is required for 
optimal Chk1 and RPA32 phosphorylation in response to 
damage and promotes the repair of stalled and collapsed 
replication forks. The defects of PRP19-knockdown cells 
in Chk1 and RPA32 phosphorylation correlate with a 
decrease in the recruitment and activation of the ATR-
ATRIP kinase on RPA-ssDNA. All of these phenotypes 
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can be rescued by WT PRP19 but not by PRP19 mutants 
that cannot bind RPA or ubiquitinate substrates [49, 
138]. These data indicate that during the DDR, PRP19 
functions as a ubiquitin ligase on RPA-ssDNA. In sup-
port of this, overexpression of PRP19 led to enhanced 
damage-induced RPA32 ubiquitination, whereas PRP19 
knockdown strongly decreased both exogenous and en-
dogenous RPA32 mono- and polyubiquitination in dam-
aged cells. In vitro, however, the PRP19 complex could 
only monoubiquitinate RPA32, raising the possibility that 
additional E2/E3 partners may be necessary to achieve 
polyubiquitination of RPA in vivo.

In response to damage, RPA32 is decorated by K63-
linked ubiquitin chains, which are known to promote 
protein-protein interactions. Since PRP19 facilitates 
checkpoint activation, we asked whether known RPA 
interactors involved in ATR activation also bind to ubiq-
uitin chains. We found that ATRIP specifically interacts 
with K63-linked tetra-ubiquitin molecules but not with 
K48-linked chains. These observations allowed us to 
propose a model whereby the ubiquitination of RPA or 
other DDR proteins by PRP19 promotes the recruitment 
and activation of ATR-ATRIP at sites of damage (Figure 
2). The ATR kinase itself is required for efficient RPA-
PRP19 interaction and RPA ubiquitination (unpublished 
data by Maréchal A and Zou L), suggesting the pres-
ence of a phosphorylation- and ubiquitination-mediated 
feed-forward loop that ensures the rapid and efficient 
activation of ATR in response to DNA damage and rep-
lication stress. Interestingly, PRP19 was also recently 
found to promote HR, implicating it in another facet of 
the DDR that takes place on RPA-ssDNA [139]. Thus, 
RPA-ssDNA is both the platform that recruits the PRP19 
complex and a substrate of the E3 ligase. It is important 
to note that RPA may not be the only substrate of PRP19 
at sites of DNA damage. In addition to RPA, other DDR 
proteins associated with RPA-ssDNA may also be ubiq-
uitinated by the PRP19 complex. Although RPA is ubiq-
uitinated in a PRP19-dependent manner, whether RPA 
is the key substrate of PRP19 in the DDR remains to be 
tested. Moreover, RPA-ssDNA may recruit additional 
ubiquitin ligases to sites of DNA damage [140-143]. Fur-
ther studies are still needed to fully elucidate the ubiq-
uitination circuitry on RPA-ssDNA and its functions.

RNF4 and RPA

RNF4 is a STUbL that regulates multiple aspects of 
the DDR [144-148]. Efficient recruitment of RNF4 to 
sites of DNA damage requires its tandem SIM domains, 
suggesting that it is tethered to damage foci by SUMOy-
lated proteins [144, 147, 148]. Following its recruitment 

to DNA lesions, RNF4 ubiquitinates many different 
SUMOylated targets to regulate the DDR [149]. Two 
studies found that RNF4 controls DSB resection and 
HR-mediated DNA repair upstream of the formation of 
RPA-ssDNA by regulating the recruitment of CtIP to 
breaks [145, 148]. Another study, however, suggested 
that RNF4 regulates HR at a post-resection step by pro-
moting the ubiquitination and turnover of RPA [144]. 
Residence time of GFP-tagged RPA70 at damaged sites 
was increased in RNF4-deficient cells. The non-SU-
MOylatable RPA70 mutant K449/577R also had a longer 
residence time compared with WT and it was not further 
increased in RNF4-depleted cells. Cells expressing the 
K449/577R mutant of RPA70 displayed reduced recruit-
ment of RAD51 and BRCA2 to laser-induced DSBs, 
confirming that RPA SUMOylation controls the later 
steps of the HR-mediated DNA repair pathway [123]. Fi-
nally, an increase in the interaction between RPA and the 
PSMD4 19S proteasomal component after IR was found 
to be RNF4 dependent [144]. However, the direct ubiq-
uitination of SUMOylated RPA70 by RNF4 remains to 
be demonstrated. Regardless of whether RNF4 directly 
ubiquitinates RPA70, it links the ubiquitination and SU-
MOylation at sites of DNA damage and plays an import-
ant role in RPA regulation during the DDR. 

Concluding remarks

Numerous publications in recent years have eloquent-
ly shown that phosphorylation, SUMOylation and ubiq-
uitination events are rapidly induced on the chromatin 
surrounding DSBs. This complex modification of the 
chromatin is carried out by a plethora of writers includ-
ing PI3K-like kinases as well as many different SUMO 
and E3 ubiquitin ligases. The decoration of chromatin-as-
sociated DDR factors provides the required specificity 
to tether additional effectors to sites of damage. These 
factors often behave as readers that bind to the altered 
surfaces through exquisitely specific interaction motifs, 
which recognize both the modified proteins themselves 
and their modifications [150, 151]. This high degree 
of specificity allows the elaborate modification of the 
γ-H2AX DDR platform to govern the DSB repair path-
way choice by modulating the chromatin association of 
53BP1 which promotes non-homologous end joining and 
of BRCA1, a crucial HR regulator [149].

Similarly, the RPA-ssDNA platform is extensively 
phosphorylated, SUMOylated and ubiquitinated in re-
sponse to damage. These post-translational alterations 
of RPA regulate the activation of the ATR checkpoint 
and also promote DNA repair, particularly through the 
HR pathway. However, our molecular understanding of 
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events occurring on RPA-ssDNA has lagged behind that 
of the chromatin-centered DDR. A deeper understanding 
of the writers and readers that function on both chromatin 
and RPA-ssDNA to coordinate the assembly and disas-
sembly of signaling and repair factors will lead to a much 
more complete picture of the DDR and could uncover 
novel targets to enhance the efficiency of current chemo-
therapeutic regimens. In particular, the identification of 
domains that allow DDR factors to specifically interact 
with modified RPA, the characterization of the full extent 
of damage-induced RPA modifications and the discovery 
of the writers responsible for these alterations should all 
be actively pursued. Research on RPA has been a very 
fruitful area for almost 30 years and the ongoing eluci-
dation of the choreography of events that occur on both 
RPA-ssDNA and chromatin in response to DNA damage 
will provide us with exciting new insights on the elegant 
strategies used by our cells to preserve genome integrity.
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