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LETTER TO THE EDITOR

A novel Bayesian network inference algorithm for integra-
tive analysis of heterogeneous deep sequencing data
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Dear Editor,

Next Generation Sequencing (NGS) technology has 
enabled sequencing millions of short DNA tags in a 
single pass. NGS-based techniques such as ChIP-Seq/
BS-Seq (Chromatin Immunoprecipitation/Bisulfite con-
version followed by deep sequencing) have become pre-
dominant approaches for genome-wide quantification of 
transcription factor binding sites, histone modifications/
variants and DNA methylation [1]. The rapidly increas-
ing volume of ChIP-Seq and other deep sequencing data 
calls for the urgent need of developing analytical tools 
for processing these data and extracting meaningful 
biological knowledge from them. Till now, a number of 
software tools that are designed to map tag sequences to 
the genome [2] or to find “peak” chromosomal regions 
with enriched mapped tags [3] have been readily avail-
able, yet tools that target the primary goal of generating 
testable biological hypotheses directly from NGS data 
barely exist.

A general question in the analysis of NGS data is 
how to de novo infer the combinatorial interactions (and 
if possible, their causalities) between different factors 
probed by ChIP-Seq experiments (e.g., transcription fac-
tors, histone modifications) and/or other factors probed 
by non-ChIP-Seq experiments (e.g., RNA-Seq, BS-Seq). 
For example, recently it was demonstrated that distinct 
genomic elements are cooperatively marked by histone 
modifications/variants and DNA methylation, which 
form so-called combinatorial chromatin states [4]. How-
ever, few software tools are designed for directly reverse 
engineering the molecular interactions that give rise to 
the combinatorial chromatin states. To address this, we 
developed a new Bayesian network (BN) structure learn-
ing algorithm “SeqSpider”, for inferring regulatory rela-
tionships/interactions between a set of biological factors 
using heterogeneous NGS data sets of different types 
(discrete/real/profile) generated by the same or different 
laboratories.

BN is an ideal probabilistic formalism for inferring 
regulatory networks [5]. By systematically searching for 

the global network that best fits the data, it can disam-
biguate direct/indirect interactions and de novo identify 
potentially causal relationships, which are not possible 
in correlation-based network inference algorithms. How-
ever, most practical BN learning algorithms only accept 
discrete training data (c.f. systems biology applications 
of these algorithms [6-8]). This limitation is even more 
conspicuous when BN is applied to NGS data as these 
algorithms cannot model tag distributions, an impor-
tant feature of NGS data. This problem is completely 
resolved by the SeqSpider algorithm, which simultane-
ously accepts tag distributions as well as discrete/contin-
uous variables. Together with a profile-based clustering 
strategy for noise reduction, SeqSpider successfully pre-
dicted with high accuracy and high stability the molecu-
lar interactions in human embryonic stem cells (hESCs) 
from heterogeneous NGS data sets generated by three 
different laboratories [9, 10] (ChIP-Seq of seven histone 
modifications and seven transcription factors, BS-Seq 
and RNA-Seq data). On the contrary, the accuracy and 
stability achieved by conventional discrete data-based 
BN learning algorithms [11, 12] are significantly lower 
on the same data sets (see below and Figure 1).

An example demonstrates the unique advantage of 
SeqSpider for seamlessly integrating multi-source and 
multi-type NGS data to infer a regulatory network for a 
certain cellular context, in this case, the self-renewing 
hESCs (Figure 1A). This advantage mainly comes from 
two technical innovations. First, we proposed a new ker-
nel function for sequence tag distributions (termed the “L1 
reciprocal partial sums” (L1-RPS) kernel, see Supple-
mentary information, Methods) to enable BN learning 
from tag profiles (as vectors) in addition to discrete and 
continuous data. A kernel can be seen as an inner product 
(an operation on two vectors that produces a scalar) in a 
high/infinite dimensional feature space. By incorporating 
the L1-RPS kernel in an optimized implementation of a 
kernel-based BN scoring approach [13], the information 
stripping data discretization step in the conventional BN 
learning methods [11] is avoided (Supplementary infor-
mation, Methods S1). Second, we exploited the “Super 
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Figure 1 Comparing SeqSpider with conventional BN learning algorithms on predicting the hESC regulatory network from NGS data 
sets. (A) The consensus hESC regulatory network inferred by SeqSpider. The color of an edge indicates the Pearson correlation 
coefficient (PCC) between the total tag counts within TSS ± 2Kb (or TTS ± 2Kb for H3K36me3) for the two interacting nodes. (B) Sta-
bility of the consensus network inferred by SeqSpider (as shown in (A), panel f) compared with alternative implementations using dif-
ferent types of training data with/without profile clustering (other panels). Network stability curves are evaluated on 10-fold incomplete 
training samples. SeqSpider algorithm works on “combined vectored data”, whereas the conventional BN algorithm [11, 12] works 
on “discretized data” and the original kernel-based BN algorithm [13] works on “real-valued data”. (C) Significance of literature co-
citation rates for networks inferred by different algorithms and on distinct types of data (null/sk/k-means/ap: no clustering/the super k-
means/the classic k-means/the affinity propagation algorithm-based profile clustering is performed; vec/real/dis: vectored/real-valued/
discrete training data). (D) Joint validations of the hESC regulatory network in (A) and two cellular context-dependent/independent 
motif networks. P-values indicate the statistical significance of network overlaps. (E) The P-values for the overlap between general 
motif interaction networks and the hESC epigenome-based regulatory networks. “cons/uncons” indicates whether a motif network is 
learned using the hESC regulatory network in (A) as a structural constraint, also see (C) for other notations of different algorithms. (F) 
Prototype of information flow of the network in (A). The input from one modification or enhancer activity that feeds into H3K4me3 at 
TSS will lead the information to flow out of the hub and engage other modifications or enhancers.
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k-means” algorithm to cluster genes with similar TF/
modification patterns (represented by concatenated gene-
wise tag profiles and expression value) to reduce noise 
and sampling biases in training data (Supplementary in-
formation, Methods S1). By applying this profile-based 
clustering step and then learning BN on the resulting 
cluster centers, SeqSpider achieves significantly better 
stability and accuracy in network inference than conven-
tional methods [11, 12] and the original kernel-based BN 
algorithm on real-valued data [13] (Figure 1B, 1C, and 
1E, Supplementary information, Note S2).

SeqSpider employed 10-dimensional vectors with uni-
form bins to represent the ChIP-Seq and BS-Seq signal 
at (– 2 kb, + 2 kb) around each TSS (or TTS for H3K-
36me3), and one-dimensional continuous variable to rep-
resent gene expression levels. The value in each element 
of a vector is the log-transformed and standardized (z-
score normalized) tag count (Supplementary information, 
Methods S1). Then, we thoroughly compared SeqSpider 
with the existing BN learning algorithms that only accept 
discrete/continuous data [11-13] with/without the profile-
clustering step. To evaluate the performance of different 
BN learning algorithms, two criteria are used: network 
stability on partial training data [7] and literature co-cita-
tion rate for network edges. The results suggest that both 
the modeling of tag distributions and the profile-cluster-
ing step for data preprocessing are necessary for SeqSpi-
der to achieve significantly better performance than con-
ventional algorithms (Figure 1B and 1C). We also tested 
alternative implementations of the two key components 
in SeqSpider, either using the classic k-means (in Clus-
ter 3.0)/affinity propagation [14] algorithm for profile-
clustering or using two other ways to define the kernel 
for tag distributions. The results suggest that the perfor-
mance of these alternative methods could not match the 
level of the SeqSpider algorithm (Figure 1C, Supple-
mentary information, Notes S2 and S13). Testing results 
also demonstrate that the output of SeqSpider is robust 
to the choice of both the single customizable parameter 
(the weight of the penalty term in scoring function) and 
the internal parameter (kernel widths); and the learned 
network is not overfitted to training data (Supplementary 
information, Notes S3, S11 and S12).

In addition to the significantly higher literature co-
citation rate in hESC regulator network inferred by Se-
qSpider compared with alternative algorithms (Figure 
1C), the network is further supported by the cellular 
context-independent, genomic sequence-based motif in-
teraction BN, as demonstrated by the significant overlap 
between the two networks (Figure 1D, P = 0.0067). Pair-
wise comparison on the significance of network overlaps 
further demonstrates that SeqSpider performs the best 

among all alternative algorithms tested (Figure 1E). Fur-
thermore, by taking the regulator BN as template, we 
also learned a constrained motif interaction network us-
ing SeqSpider, revealing sequence motifs that potentially 
mediate the regulator interactions in the hESC context 
(Supplementary information, Figure S22). The uncon-
strained/constrained motif networks overlap well (Figure 
1D and 1E, P = 6.15E-8) and both of them are further 
validated by independent evidence, the spatial closeness 
of motif locations in the promoter regions (Supplementary 
information, Figure S23). 

The regulator network brought new biological insights 
into hESCs. First, NGS data from different laboratories 
and of different types [9, 10] are fully intermingled in the 
network according to their biological relationships (Fig-
ure 1A, Supplementary information, Note S4). Second, 
H3K4me3, which directly correlates with gene expres-
sion, stays at the center of the network and connects six 
major regulatory domains. Both the domain structures 
and 87.5% edges in the network have been reported 
in literature (except two edges: H3K27me3-H3K9ac, 
NANOG-TAFII) (Figure 1A, Supplementary informa-
tion, Note S4). Third, although this network does not in-
clude directed edges, SeqSpider’s capability of correctly 
predicting causal relationships is proven theoretically and 
demonstrated on a CD4+ T-cell ChIP-Seq data set [1, 7] 
(Supplementary information, Note S14). The star-shaped 
topology of the hESC network is further demonstrated 
by an independent mESC network, by a larger hESC net-
work with more recent ChIP-Seq data and by networks 
learned from different groups of promoters (Supplemen-
tary information, Notes S15, S16 and S17). According to 
BN theory, this topology indicates that any input arrow 
pointing toward H3K4me3 will lead to outward flow 
toward all other branches, implicating dynamic com-
munication among these regulatory domains (Figure 1F, 
Supplementary information, Note S5). Though this is 
still a hypothesis, the bidirectional nature of one edge 
H3K4me3-Oct4 has recently been demonstrated experi-
mentally in hESC [15]. The difference of the connectiv-
ity and directionality of edges around H3K4me3 between 
the hESC and the CD4+ T-cell network is likely to reflect 
the diverse regulatory program in the two cell types 
(Supplementary information, Note S8). Finally, we found 
that the missing of a few known regulatory relationships 
in the hESC network is not the fault of SeqSpider, but 
simply because they are not well supported by the NGS 
data sets or due to BN’s acyclic constraint. To relax the 
acyclic constraint, we developed a post-BN learning 
graph search method, which successfully recovered some 
known interactions otherwise missed (Supplementary in-
formation, Methods S1, Notes S18 and S19).
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To conclude, by modeling sequence tag distributions 
and introducing the profile-clustering strategy for noise 
reduction, SeqSpider achieved significantly better per-
formance than previous BN algorithms for inferring a 
regulatory network from NGS data sets, and allowed 
for the first time seamless integration of heterogeneous 
data types from different sources. Given the fast growing 
volume of NGS data, SeqSpider (http://www.picb.ac.cn/
hanlab/seqspider.html) will become an important tool for 
reverse-engineering regulatory networks of various bio-
logical contexts.
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