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G protein-coupled receptors (GPCRs) mediate most of our physiological responses to hormones, neurotransmit-
ters and environmental stimulants. They are considered as the most successful therapeutic targets for a broad spec-
trum of diseases. Multiple sclerosis (MS) is an inflammatory disease that is characterized by immune-mediated de-
myelination and degeneration of the central nervous system (CNS). It is the leading cause of non-traumatic disability 
in young adults. Great progress has been made over the past few decades in understanding the pathogenesis of MS. 
Numerous data from animal and clinical studies indicate that many GPCRs are critically involved in various aspects 
of MS pathogenesis, including antigen presentation, cytokine production, T-cell differentiation, T-cell proliferation, 
T-cell invasion, etc. In this review, we summarize the recent findings regarding the expression or functional changes 
of GPCRs in MS patients or animal models, and the influences of GPCRs on disease severity upon genetic or phar-
macological manipulations. Hopefully some of these findings will lead to the development of novel therapies for MS 
in the near future.
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Introduction

Multiple sclerosis (MS), also known as disseminated 
sclerosis or encephalomyelitis disseminata, is an inflam-
matory disease that is characterized by immune-mediated 
demyelination and neurodegeneration of the central 
nervous system (CNS). It leads to substantial disability 
through deficits of sensation and of motor, autonomic, 
and neurocognitive functions. The disease onset usually 
occurs in young adults between 20 to 40 years of age [1, 
2] with a prevalence that ranges between 2 and 150 per 
100 000 [3]. The disease is usually not life-threatening, 
but its socioeconomic importance is second only to trau-
ma in young adults [4, 5].

CD4+ T-cell-mediated autoimmunity has long been 

accepted as one of the most important aspects of MS 
pathogenesis, especially for the early initiation of the dis-
ease [6, 7]. T-helper type 1 (Th1) cells, characterized by 
the production of interferon-γ (IFN-γ), have been consid-
ered the type of effector T-helper cells that mediate the 
pathogenesis of MS. Subsequent studies have revealed 
that the IL-17-expressing T-helper cells (Th17) are also 
involved and are at least as critical as Th1 cells in this 
disease. Mice with fewer Th17 cells are less susceptible 
to experimental autoimmune encephalomyelitis (EAE) [8, 
9], a mouse model of MS; and IL-17-expressing T cells 
have been found in lesions of brain tissues from patients 
with MS [10].

There are several types of MS, including Benign MS, 
Relapsing Remitting MS (RRMS), Secondary Progres-
sive MS (SPMS), Primary Progressive MS (PPMS), and 
Malignant MS (also known as Marberg Variant MS). 
RRMS is the most frequent (85%-90%) form and af-
fects women about twice as often as men. Patients tend 
to experience an attack or series of attacks (exacerba-
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tions) followed by complete or partial remission. Most 
RRMS patients later develop SPMS. At that stage, there 
are no real periods of remission, but only breaks in attack 
duration with no real recovery from symptoms. About 
10%-15% of patients presenting with insidious disease 
onset and steady progression are termed PPMS [7]. It is 
characterized by gradual clinical decline with no real or 
distinct periods of remission. Magnetic resonance imag-
ing (MRI) [11] or histopathological evaluation [12, 13] 
also revealed heterogeneity in morphological alterations 
of the brain in different patients. It is still not clear which 
factors may contribute to the different disease courses 
and the heterogeneity in clinical presentations. Complex 
genetic effects and environmental components that trans-
late into different immune abnormalities and/or increased 
vulnerability of CNS tissue to inflammatory insults or 
reduced ability to repair damage are certainly involved. 
Relatives of people who have the disease have an in-
creased risk; if a patient with MS has an identical twin, 
that twin’s risk climbs to more than 25% [4, 14]. But 
when a team of US researchers compared the complete 
genomes of twin females with each other, they failed to 
find any genetic differences that might cause MS [15]. 
This observation indicates that the environmental stress 
might also play an important role in eventually triggering 
the pathogenesis of MS.

G protein-coupled receptors (GPCRs), also known as 
7-transmembrane receptors, are the largest family of cell 
surface receptors involved in transmitting extracellular 
environmental signals into the cells. These receptors 
are activated by a wide variety of stimulations, includ-
ing light, odorant molecules, peptide and non-peptide 
neurotransmitters, hormones, growth factors, lipids, etc. 
[16]. The GPCR family comprises approximately 2% of 
the human genome and remains a central focus in basic 
pharmacology studies and drug discovery efforts [17]. 
After agonist binding, the activated receptors catalyze the 
exchange of GDP for GTP on the α-subunit of heterotri-
meric G proteins (composed of α-, β-, and γ-subunits), 
which in turn engages conformational changes that lead 
to the dissociation of the Gα from the dimeric Gβγ sub-
units [18]. Both the Gα- and Gβγ- subunits can convey 
the extracellular signals by activating or suppressing 
downstream effector molecules, such as adenylyl and 
guanylyl cyclases, phosphodiesterases, phospholipases, 
phosphoinositide 3-kinases (PI3K), ion channels and 
other signaling components [16].

GPCRs have emerged as the most important targets 
for human therapeutics due to their large numbers and 
critical roles in the physiology of vital systems, such as 
cardiovascular, nervous, immune, metabolic, and endo-
crine systems. The prominent roles of GPCRs in cancer 

are also well recognized [19, 20]. These receptors are the 
target of > 50% of the current therapeutic agents on the 
market, including more than a quarter of the 100 top-sell-
ing drugs with benefits in the range of several billion US 
dollars each year. Here, we review recent progress on the 
roles of GPCRs in the pathogenesis of MS and hope that 
some of these receptors might become new therapeutic 
targets for this disease in the near future.

GPCRs involved in MS or EAE

Adenosine receptors
Dysfunction of adenosinergic system has been im-

plicated in the development of MS in humans and EAE 
in animals. Blood adenosine level decreases greatly in 
MS patients [21]. Among the four known subtypes of 
adenosine receptors – referred to as A1, A2A, A2B, and 
A3, the role of A1 in MS pathology has been intensively 
studied in both clinical samples and animal models. A1 
was selectively diminished on cells of monocyte/mac-
rophage lineage in both brain and blood samples from 
MS patients. This reduction potentially led to increased 
macrophage activation and CNS inflammation [21, 22]. 
In animal model, the A1 knockout mice developed a se-
vere progressive-relapsing form of EAE with extensive 
inflammation and demyelination in CNS compared with 
the corresponding controls [23]. Conversely, treatment 
with the A1 receptor agonist ADAC reduced spinal cord 
injuries in EAE mice [23]. Caffeine, a non-selective an-
tagonist of adenosine receptors, has also been shown to 
alleviate EAE in mice and rat [23-25]. It has been pos-
tulated that chronic treatment with caffeine may benefit 
EAE animals by upregulating A1 receptor and TGF-β, 
and suppressing IFN-γ [25]. These results suggest that 
adenosine might act through the A1 receptor to suppress 
inflammation and that dysfunction of A1 contributes to 
the pathogenesis of MS.

On the other hand, a recent study unexpectedly dis-
covered that mice with a genetic deficiency in CD73, 
an extracellular nucleotidase critical for the generation 
of extracellular adenosine, are highly resistant to MOG-
induced brain and spinal cord injury [24]. Such reduction 
in EAE severity was not due to the lack of responsive-
ness of T cells, since CD4+ T cells from CD73−/− mice 
secreted more proinflammatory cytokines than wild-type 
mice and were able to induce EAE when transferred into 
naive CD73+/+ recipients. This correlates well with other 
reports that adenosine is an anti-inflammatory media-
tor. It seems that adenosine concentration in the CNS, 
possibly surrounding the choroid plexus epithelium, is 
critical for pathogenic T-cell infiltration, as the CD73−/− 
mice had fewer infiltrating lymphocytes in their CNS 
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compared with wild-type mice even though their T cells 
were highly activated. In the same study, the authors also 
found that pharmacological blockade of the A2A receptor 
with SCH58261 attenuates EAE pathology [24]. These 
results are quite controversial because A2A receptor is 
recognized as a major mediator of anti-inflammatory re-
sponses. Activation of A2A has been reported to suppress 
key components of the inflammatory process, including 
leukocyte recruitment, phagocytosis, pro-inflammatory 
cytokine production, and immune cell proliferation [26, 
27]. These findings have already led to the clinical test-
ing of A2A agonists in the treatment of inflammatory 
diseases such as chronic obstructive pulmonary disease 
(COPD) and diabetic foot ulcer [27-29]. The beneficial 
effect of A2A antagonist in EAE animals suggests that 
A2A receptors in the CNS might play an opposite role 
compared to the A2A receptors expressed on immune 
cells, though the functions of CNS A2A receptors are yet 
to be defined in autoimmune diseases. Using A2A knock-
out mice would certainly help to clarify the seemingly 
different roles of the periphery and CNS A2A receptors. 
It is quite surprising that no EAE studies have been con-
ducted on the A2A knockout mice considering that these 
animals have been available for quite some time [30, 31]. 

Unique among the four adenosine receptors, A2B is a 
low-affinity receptor for adenosine. Adenosine activates 
A1, A2A, and A3 receptors with EC50 values between 
10 nM and 1 µM, whereas A2B receptor activation gen-
erally requires adenosine levels that exceed 10 µM [32]. 
The physiological adenosine concentrations are lower 
than 1 µM, so activation of the A2B receptor is believed 
to require pathological conditions such as ischemia, trau-
ma, inflammation or other types of stress [33]. Though its 
functions in MS or EAE are not clear, A2B has been re-
ported to play pro-inflammatory roles in both rodent and 
human asthma and COPD. Activation of A2B has been 
demonstrated to increase the production of IL-6 and IL-
19 from mast cells, bronchial smooth-muscle cells, bron-
chial epithelial cells, and lung fibroblasts [34]. In fact, 
CVT-6883, an A2B-selective antagonist, is under clinical 
investigation for the treatment of COPD [27]. A2B is 
also believed to be involved in inflammatory bowel dis-
eases. A2B receptors are upregulated in gut tissue during 
both human and murine colitis [35], and A2B blockade 
[36] or knockout [37] suppresses intestinal inflammation 
and attenuates the course of disease in murine colitis.

Though it is still unclear whether the A3 receptor is 
involved in MS, this receptor has been implicated to 
mediate the inhibition of TNF-α production by adenos-
ine [38, 39]. Anti TNF-α drugs are remarkably effective 
in several autoimmune diseases, including rheumatoid 
arthritis, Crohn’s disease, psoriasis and ankylosing spon-

dylitis [40]. Blocking TNF-α with antibodies or soluble 
TNF receptors also decreased EAE severity in animals 
[41]. Unfortunately, such treatments have been found to 
be harmful rather than beneficial in human MS trials [42, 
43]. A3 has also been found to be overexpressed in in-
flammatory tissues [44] and the PBMCs of arthritic ani-
mals [45]. These findings warrant further investigations 
of this receptor in the pathogenesis of EAE or MS.

While the precise roles of adenosine and adenosine 
receptor subtypes in the development of MS and EAE 
remains to be clarified, the above findings clearly high-
light the critical involvement of adenosine and adenosine 
receptors in inflammation and autoimmunity.

Adrenergic receptors
Accumulating evidence over the past few decades 

has documented that the brain communicates with the 
periphery immune system via two major pathways. The 
first pathway involves activation of the hypothalamic-
pituitary-adrenal axis and the eventual secretion of 
corticosteroids from the adrenal cortex (reviewed in 
[46]). The second pathway involves activation of the 
sympathetic nervous system (SNS) and the release of the 
various neural transmitters (reviewed in [47]). As one 
of the major neural transmitters from the SNS, the cat-
echolamine norepinephrine elicits its biological functions 
by activation of α1-, α2-, and β-adrenergic receptors [47].

Results from a series of studies show that the expres-
sion of adrenergic receptors, especially β-adrenergic 
receptors, changes significantly in both MS patients and 
EAE animals, when compared with the related controls. 
An early study with the Lewis rat acute EAE model indi-
cated that in response to immune challenge, the splenic 
noradrenaline content fell significantly, accompanied 
by an increase in lymphocyte β-receptor density. These 
changes were considered as early indicators of immune 
reactivity [48]. Similarly, in the MRL-lpr/lpr mouse, a 
genetic model of the human autoimmune disease system-
ic lupus erythematosus, noradrenergic innervation and 
noradrenaline content were reduced in the spleen prior 
to the onset of observed splenomegaly and remained 
reduced at all ages examined [49]. In MS patients, in-
creased β-adrenergic receptor density on PBMCs, includ-
ing lymphocytes, has been well documented [50-55]. 
This increase in β-adrenoreceptor density has been shown 
to be correlated with the expression of high affinity IL-2 
receptors (IL-2R) on PBMCs and disease activity of 
RRMS. In vitro studies showed that β-agonist stimulation 
of PBMCs reduces the IL-2R expression and suppresses 
cell proliferation following mitogenic stimulation [51]. 
This observation may indicate a recovery role for the en-
hanced β-adrenoceptor expression in MS. β2-adrenergic 
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receptor is expressed on Th1 but not on Th2 cells [56]. 
Given that cellular Th1 immune activity is considered 
to be one of the major contributors to disease activity 
in MS, increased expression of β2-adrenoreceptor may 
reflect activation of Th1 cells and a predominant cellular 
immune activity. Adrenergic receptors have also been re-
ported to modulate cytokine production in dendritic cells 
(DCs) and affect their Th cell-priming ability [57]. In 
particular, activation of β2-adrenergic receptors in DCs 
hampered IL-12, but stimulated IL-10 production result-
ing in reduced migration and Th1 priming [58, 59]. In 
contrast, more recent studies indicated that activation of 
β2-adrenergic receptors in DCs might lead to a dominant 
Th2/Th17-promoting phenotype in response to immuno-
genic protein or pathogen stimulation [60].

Another interesting phenomenon is the lacking of the 
astrocytic β2-adrenergic receptor in MS patients. β2-
adrenoceptor has been identified on all GFAP-positive 
astrocytes in white matter and the optic nerve of healthy 
human and normal animals [61, 62], and astrocytes are 
the main cellular target of norepinephrine terminals in the 
brain [63]. However, in MS patients, this receptor could 
neither be visualized on astrocytes in normal-appearing 
white matter nor in reactive astrocytes in chronic active 
and inactive plaques, although it was normally present on 
neurons [61, 64]. Astrocytes are considered the primary 
APCs of the CNS in EAE models. Mice astrocytes can 
express MHC class II and B-7 co-stimulatory molecules, 
which are necessary for the efficient activation of naive 
T cells [65], and have potential for processing and pre-
senting CNS auto-antigens to pro-inflammatory T cells 
[66]. In normal conditions, the expression of MHC class 
II molecules are tightly suppressed by norepinephrine via 
β2-adrenergic receptor activation [67, 68]. Norepineph-
rine also inhibits the astrocytic expression of proinflam-
matory cytokines through the IκBα/NFκB pathway [69, 
70]. The loss of astrocytic β2-adrenergic receptor might 
explain the presence of MHC class II on astrocytes and 
the increased pro-inflammatory cytokine levels in MS 
lesions. What causes the loss of astrocytic β2-adrenergic 
receptor in MS patients remains unclear, though a ‘hit 
and run’ viral infection model has been proposed [71].

Compounds regulating the adrenergic receptors 
have been used to treat EAE and MS. Nonselective 
β-adrenergic agonist isoproterenol and the β2-specific 
agonist terbutaline significantly suppressed both the first 
acute attack and the number of relapses in EAE Lewis 
rats [72]. Other β2-adrenergic agonists, such as salbuta-
mol and albuterol, have been proposed to be used as add-
on therapy in patients with MS [71, 73-75]. In a recent 
trial with albuterol as an add-on treatment to glatiramer 
acetate therapy, improvement in the MS functional com-

posite and a delay in the time to the first relapse were ob-
served in the glatiramer acetate plus albuterol group [76]. 
Other modulators of adrenergic receptors have also been 
reported to benefit EAE animals or MS patients. Pra-
zosin, an α1-adrenergic receptor antagonist, suppressed 
the clinical and histological expression of EAE in the 
Lewis rat [77-79]. Tizanidine, an α2-adrenergic receptor 
agonist, is a very useful medication in patients suffering 
from spasticity caused by MS [80, 81].

Cannabinoid receptors
The medicinal use of Cannabis sativa (marijuana) 

can be traced back for centuries. But the existence of an 
‘endocannabinoid system’ has only gained appreciation 
in the past few decades. This system consists of endocan-
nabinoids (arachidonoylethanolamine (AEA), 2-arachi-
donoyl glycerol, 2-arachidonyl glyceryl ether (noladin 
ether), N-arachidonoyl-dopamine, virodhamine, etc.), 
their synthesizing/degradation enzymes and their recep-
tors. There are two major types of cannabinoid recep-
tors, termed CB1 and CB2. But other receptors, such as 
vanilloid receptor, GPR55 and GPR119 have also been 
reported to be activated by cannabinoids [82-84]. The 
CB1 receptor is mainly expressed in the CNS, but also in 
the lungs, liver and kidneys. The CB2 receptor is mainly 
expressed in the immune system and in hematopoietic 
cells. Recently, CB2 has also been described in microglia 
and neuronal progenitor cells, but with few exceptions, it 
is not expressed by neurons within the CNS [82, 85]. 

Both CB1 and CB2 are Gαi-coupled GPCRs. Activa-
tion of these receptors leads to inhibition of adenylate cy-
clase activity, reduced cAMP level, decreased activity of 
PKA, and eventual reduction in cytokine production and 
synaptic transmission [86]. Activation of these receptors 
showed protective effects in various EAE models. Using 
the Theiler’s murine encephalomyelitis virus (TMEV) 
model, the synthetic cannabinoids WIN 55212-2, ACEA, 
and JWH-015 significantly improved the neurologi-
cal deficits in a long-lasting way [87, 88]. In a rat EAE 
model, decreased endocannabinoid level was reported in 
the brain and activation of cannabinoid receptors reduced 
the neurological impairment [89]. The non-selective 
cannabinoid receptor agonist WIN-2 was found to ame-
liorate the clinical signs and diminish the cell infiltration 
into the spinal cord in a passive EAE rat model [90]

The CB1 receptor was the initial focus of attention 
for studies using cannabinoids to treat EAE, because the 
activation of CB1 was believed to inhibit synaptic trans-
missions, which might contribute to spasticity, tremor 
and paralysis in EAE [91-93]. These studies provide 
objective evidence to support the claims of MS patients 
that cannabinoids may have a benefit in symptom man-
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agement [94]. The beneficial effects were further sup-
ported by recent clinical trials with medical cannabis 
extracts [95]. More direct evidence for the protective 
roles of CB1 receptor came from a study in a conditional 
knockout EAE model in which the neuronal CB1 was 
selectively deleted. In such animals, the cannabinoid-
mediated EAE suppression was abolished [96].

In the same study, Maresz et al. [96] also reported 
that CB2 receptor expressed by the pathogenic T cells 
was critical for controlling inflammation associated with 
EAE. CB2-deficient T cells in the CNS of EAE animals 
exhibited reduced levels of apoptosis, a higher rate of 
proliferation, and increased production of inflammatory 
cytokines, resulting in more severe clinical symptoms. 
Palazuelos et al. [97] also found that CB2 knockout 
mice showed exacerbated clinical score of EAE; and 
the underlying mechanism might involve the extensive 
recruitment of immature bone marrow-derived CD34+ 
myeloid progenitor cells towards the spinal cords in CB2 
knockout EAE mice. The immunosuppressive effect 
of CB2 activation was also supported by studies with 
selective CB1/CB2 agonists/antagonists. Ni et al. [98] 
demonstrated that the therapeutic effect of WIN55212-
2, a non-selective CB1/CB2 agonist, could be blocked 
by CB2 antagonist SR144528, but not by CB1 antagonist 
SR141716A. JWH-015, a cannabinoid with a relatively 
high selectivity for CB2, was reported to suppress mi-
croglial activation [99]. O-1966, a selective CB2 agonist 
[100], was found to significantly improve the motor 
function in the chronic EAE model, the remitting-relaps-
ing model and the adoptive transfer model [101]. Admin-
istration of HU-308, with a selectivity of ~500× for CB2 
vs CB1 [102], improved EAE symptoms and reduced 
spinal cord lesions and microglial activation [97]. Unlike 
CB1, CB2 activation is not associated with psychoactive 
effects. Therefore, targeting CB2 with selective agonists 
might be a more attractive way to treat MS.

It is also interesting to notice that the key components 
of the endocannabinoid system are all altered in MS 
patients. AEA and palmitoylethanolamide (PEA) were 
found to be higher in RRMS samples compared to con-
trols. AEA, PEA, and oleoylethanolamide were also in-
creased in the plasma of SPMS patients; PPMS patients 
had higher AEA plasma levels compared to controls. 
mRNA level of fatty acid amide hydrolase, the enzyme 
responsible for the degradation of endocannabinoids, was 
decreased in SPMS but not in RRMS or PPMS blood. 
CB1 and CB2 mRNAs were increased in the PPMS pa-
tients [103, 104]. The fact that all these alterations will 
lead to the activation of the endocannabinoid system 
suggests that the body might employ these as a mecha-
nism to compensate for the over-activation of immune 

responses. 

Chemokine receptors
Chemokines are cytokines initially characterized to be 

associated with leukocyte chemotaxis and inflammatory 
responses. Chemokines are classified on the basis of their 
structural properties, regarding the number and position 
of the conserved cysteine residues at the amino-terminal, 
into two major (CXC and CC) and two minor (C and 
CX3C) subfamilies [105, 106]. Chemokines were the first 
members of cytokine family to be shown to interact with 
GPCRs. Chemokine receptors comprise 10 CCR family 
members, 7 CXCR family members and other receptors 
including XCR1, CCRL1 and 2, and CX3CR1. Three de-
coy receptors, D6, DARC, and CCX-CKR (Chemocen-
tryx-chemokine receptor), which bind chemokines with 
high affinity but do not elicit signal transduction, have 
also been reported [107]. Many chemokines bind mul-
tiple receptors and most receptors bind multiple chemok-
ines, suggesting the possibility of functional redundancy, 
which is also likely to be modulated by both the spatial 
and temporal control of expression. Chemokine receptors 
signal through heterotrimeric G-proteins, which in turn 
regulate diverse signal transduction pathways, including 
intracellular calcium, mitogen-activated protein kinases, 
PLCβ, PI3K, Ras, and Rho GTPases pathways, etc. [108]. 
These signal mechanisms are believed to be responsible 
for cell movement beyond immune cell trafficking, as 
they also regulate other processes, such as hematopoiesis 
[109], angiogenesis [110], and organogenesis, including 
CNS formation [111].

The infiltration of leukocytes into the CNS is an es-
sential step in the neuro-pathogenesis of MS. Leukocyte 
extravasation from the bloodstream is a multi-step pro-
cess that depends on fluid dynamics within the vascula-
ture and molecular interactions between circulating leu-
kocytes and the vascular endothelium. An important step 
in this cascade is the binding of chemokines displayed on 
the vascular endothelial cell surface to chemokine recep-
tors on circulating leukocytes, initiating intracellular sig-
naling that leads to integrin activation, leukocyte arrest, 
and extravasation [112]. Indeed, during the pathogenesis 
of MS or EAE, the expression of many chemokines and/
or their receptors has been found to be altered signifi-
cantly in the demyelinating plaques or the periphery im-
mune tissues (summarized in Table 1). 

Modulating immune cell migration into the CNS may 
represent an ideal way of combating neuro-inflammation, 
and accurately determining which processes or physi-
ological roles may be regulated by a given chemokine or 
its receptors is crucial. The best means of investigating 
the actual functions of chemokines and their receptors 
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Table 1  The expression changes of chemokines and their receptors during MS or EAE pathogenesis
Chemokine 
or receptor

CCR1

CCR2
CCR3

CCR4

CCR5

CCR7
CCR8

CX3CR1
CXCR1
CXCR2
CXCR3

CXCR4
CCL1
CCL2

CCL3

CCL4
CCL5

CCL7
CCL17
CCL19

CCL21
CCL22
CX3CL1
CXCL1
CXCL9
CXCL10

CXCL11
CXCL12
CXCL13

Location

In early, actively demyelinating 
plaques
In chronic active MS lesions
In chronic active MS lesions
CD4+ and CD8+ cells in CSF at 
relapse; CNS
CD4+ and CD8+ cells in CSF at 
relapse
Invading leukocytes
MS lesions

CD4+, CD8+, CD19+, and 
CD14+ cells in peripheral blood/ 
macrophages microglia
MS lessions
Phagocytic macrophages and 
activated microglia
Peripheral mononuclear cells
CNS
MS lesions
CSF T cells
CD14+ cells in peripheral blood
CNS
Active MS lesions
CD14+ cells in peripheral blood

CSF/serum
CSF
CSF

CSF

CSF
Brain tissue/CSF

Brain tissue/CSF
CNS
CSF/serum
MS lesions
CSF
CSF

Serum
Astrocytes in lesion areas/BBB
CSF

MS patients vs healthy controls
Expression 
change
Elevated

Elevated
Elevated
Reduced

Reduced

Elevated
Elevated

Elevated

Elevated
Elevated

Reduced
Elevated
Elevated
Elevated
Elevated
Elevated
Elevated
Elevated

Elevated
Reduced
Elevated

Elevated

Elevated
Elevated

Unchanged
Elevated
Elevated
Elevated
Elevated
Elevated

Elevated
Elevated
Elevated

Ref. no.

[205-207]

[209-211]
[209]
[214]

[214]

[215]
[207, 209, 
216]
[206, 217, 
218]

[219]
[221]

[222]
[224, 225]
[224, 226]
[228]
[211, 217]
[224]
[216, 229]
[217]

[231]
[233, 234]
[216, 231]

[216, 217, 
231, 237]

[238]
[239]

[239]
[215]
[242]
[224-226]
[216]
[216, 217, 
229, 231, 234]
[244]
[245-247]
[247]

Location

Spinal cord

Spinal cord

Spinal cord

CNS
CNS

Spinal cord

Spinal cord

Spinal cord
Spinal cord
Spinal cord

Spinal cord

Spinal cord
Spinal cord

Spinal cord

Venules surrounded 
by inflammatory 
cells
CNS

Spinal cord
CNS
Spinal cord/ cerebel-
lum

Expression 
change
Elevated

Elevated

Elevated

Elevated
Elevated

Elevated

Elevated

Elevated
Elevated
Elevated

Elevated

Elevated
Elevated

Elevated

Elevated

Unchanged

Elevated
Elevated
Elevated

Ref. no.

[208]

[208, 212, 213]

[208, 212]

[220]
[220]

[205, 212, 223]

[227]

[227]
[230]
[230, 232]

[213, 230, 232, 
235, 236]
[230, 232]
[230, 232, 235]

[232]

[240, 241]

[240, 241]

[232, 235]
[243]
[232, 243]

EAE vs naive animals
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are probably those using gene-manipulated (transgenic or 
knockout) mice and specific pharmacological blockers of 
the receptors (summarized in Table 2). Even though the 
attempt to translate knowledge from the animal models 
to the human situation is criticized, these models have 
rapidly led to an understanding of chemokine signaling 
pathways and have provided the basis for their use as 
therapeutic targets.

The recent failures of CCR1 antagonists BX471 (Ber-
lex/Schering), MLN 3701 and MLN 3897 (Millennium) 
and CCR2 antagonist MK-0812 (Merck), which showed 
promising results in animal models [113], in treating 
MS in phase II clinical trials highlighted the difficulty 
of this animal-to-human translation [114]. Functional 

redundancy of chemokines and their receptors might 
contribute to this problem. Moreover, the redundancy 
could vary between species, making it difficult to predict 
what the outcome of an antagonist tested in animal mod-
els will be in humans. Finally, the heterogeneity of MS 
[114, 115] might further complicate the problem. Despite 
these difficulties, pharmaceutical companies still con-
sider chemokine receptors as promising therapeutic tar-
gets. Almost every major company has a list of potential 
blockers in clinical development for different indications, 
including MS (summarized in Table 3).

Leukotriene receptors
Leukotrienes are potent pro-inflammatory mediators 

Table 2  Pharmacological and genetic modulations of the chemokine system mediate disease severity in EAE animal models
Chemokine or                                 Modulation or intervention  EAE severity Ref. no.
receptor Pharmacological Genetic
CCR1  Knockout Alleviated [248]
 Antagonists (2-2-diphenyl-5-(4-chlorophenyl)  Alleviated [249, 250]
 piperidin-1-yl)valeronitrile; BX 471)
CCR2  Knockout Alleviated [251-254]
 Antibody  Alleviated [211]
CCR5  Knockout Comparable [255]
 Antagonist (TAK-779)  Alleviated [256]
CCR6  Knockout Enhanced [257, 258]
  Knockout Alleviated [259, 260]
CCR7  Knockout Alleviated [261]
CMKLR1  Knockout Alleviated [262]
CX3CR1  Knockout Enhanced [263]
CXCR2 Anti-CXCR2 antiserum Knockout Alleviated [264]
 Antagonists  Alleviated [265]
CXCR3  Knockout Enhanced [266, 267]
 Antagonist (CXCL11(4-79))  Alleviated [268]
CXCR4 Antagonist (CXCL12(P2G2))  Alleviated [268]
 Antagonist (AMD3100)  Enhanced [269]
CCL2  Knockout Alleviated [270]
 Antibody  Alleviated [236, 271]
  Transgenic  Alleviated [272]
  expression
CCL3  Knockout Comparable [255]
 Antibody  Alleviated [236, 271]
CCL5 Antibody  Comparable [236]
CCL19/CCL21 Exogenous CCL19/CCL21 treatment  Alleviated [261]
CXCL10 CXCL10 antibody  Alleviated [273]
 CXCL10 antibody  Enhanced [274]
  Knockout Enhanced [275]
CXCL13  Knockout Alleviated [276]
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derived from arachidonic acid via the sequential actions 
of cytosolic phospholipase A2α (cPLA2α), 5-lipoxyge-
nase (5-LO), and LTA4 hydrolase (LTA4H) for LTB4, 
or LTC4 synthase (LTC4S) for cysteinyl leukotrienes 
(CysLTs, including LTC4, LTD4, and LTE4) [116]. There 
have been contradictory reports regarding the change 
of leukotriene levels in MS patients and animal models. 
Some studies found that the LTB4 and LTC4 levels are 
significantly increased in the cerebrospinal fluid (CSF) 
of MS patients compared with the controls [117, 118]. 
But no significant difference exists in LTC4 production 
between MS and control peripheral blood monocytes and 
macrophages [118, 119]. These results were also verified 
in the animal model of EAE [120]. Other studies, how-
ever, found normal CSF concentrations of leukotrienes 
[121]. Such discrepancies have been attributed to the 
difficulties in measuring leukotrienes accurately in body 
fluids.

However, the studies of the key enzymes of the leu-
kotriene biosynthesis pathways revealed important roles 
of leukotrienes in the pathogenesis of MS. The biosyn-
thesis of leukotrienes in inflammatory cells begins with 
the cleavage of arachidonic acid from nuclear membrane 
glycerophospholipids by cPLA2α. Marusic et al. [122, 
123] reported that cPLA2α-deficient mice are resistant 
to EAE and blocking cPLA2α with specific inhibitors 
prevents EAE development and greatly reduces antigen-
induced production of Th1-type cytokines and IL-17. 
Another key enzyme, 5-LO, which catalyses the conver-
sion of arachidonic acid to 5-hydroperoxyeicosatetraeno-
ic acid and subsequently the unstable precursor LTA4, 
was found to be upregulated in both MS lesions and 
EAE brains by microarray analysis [124]. 5-LO-specific 
inhibitors-treated guinea pigs showed significantly lower 
histological inflammation and better clinical outcome 

compared with controls upon EAE induction [120, 125, 
126].

The biological effects of LTB4 are mediated via two 
GPCRs, BLT1 and BLT2 [127]. CysLTs also activate two 
GPCRs, namely CysLT1 and CysLT2 [128]. Inhibition 
of LTB4 receptors by antagonists or gene knockout al-
leviates disease pathology in EAE. An early study found 
that LTB4 receptor antagonist treatment significantly 
reduced, but did not completely inhibit the cachectic 
response in a guinea pig EAE model [129]. Similar re-
sults were also observed in a murine model of EAE upon 
antagonist treatment [130]. A recent study with BLT1-
knockout mice found that BLT1 deficiency led to delayed 
onset and less severe symptoms of EAE, and BLT1−/− 
lymphocytes showed impaired proliferation ability and 
decreased cytokine production [127]. Our recent study 
with two anti-asthmatic drugs (montelukast and zafirlu-
kast) targeting CysLT1 indicated that blocking CysLT1 
could alleviate CNS inflammatory cell infiltration and 
pathogenesis of EAE by reducing the permeability of the 
blood brain barrier (BBB) and the chemotaxis of patho-
genic T cells [131].

Opioid receptors
Opioid compounds such as morphine modulate no-

ciceptive pathways in the nervous system and produce 
powerful analgesia, and are used to treat various types of 
pain. It has also been noticed for a long time that opioids 
can alter the immune responses. Acute or chronic admin-
istration of opioids is known to have inhibitory effects 
on humoral and cellular immune responses, including 
antibody production, natural killer-lymphocyte activity, 
cytokine expression, and phagocytic activity [132-134]. 
Increased morbidity and mortality due to artificial infec-
tion and faster cancer progression have been well docu-

Table 3  Chemokine receptor modulators in clinical investigation for MS
Chemokine  Modulators Activity Phase Company Status Ref. no.
receptor
CCR1 AVE9897 Antagonist Phase I completed SanofiAventis Discontinued [277]
CCR1 MLN3897 Antagonist Phase I completed Millenium  Discontinued [277]
    Pharmaceuticals
CCR1 BX471 Antagonist Phase II completed Schering AG No significant  [114]
     activity
CCR2 CCX915 Antagonist Phase II planned ChemoCentryx  [277]
CCR2 INCB8696 Antagonist Phase I ongoing Incyte  [277]
CCR2 MK-0812 Antagonist Phase II Merck Completed [188]
CCR2 MLN1202 Antibody Phase II Millenium  Completed [278]
    Pharmaceuticals
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mented in animal studies with morphine treatment [134, 
135]. However, from other studies it emerges that not 
all opioids induce the same immuno-suppressive effects 
[136, 137].

The endogenous opioid system is comprised of na-
tive opioid peptides and four opioid receptors: delta, mu, 
kappa receptors, and opioid receptor-like 1 [138]. Pre-
clinical investigations utilizing animal models, as well 
as clinical observations with MS patients, suggested al-
teration of endogenous opioid systems in the disease. In 
the TMEV model of MS, mRNA levels of the mu, delta, 
and kappa opioid receptors were significantly decreased 
in the spinal cord at days 90, 150, and 180 post infec-
tion [139]. The loss of opioid receptors might partially 
explain the common central neuropathic pain in MS pa-
tients [140]. Pregnant woman usually have higher levels 
of endogenous opioids [141]. They experience remission 
of MS and have fewer relapses during their pregnancy. 
However, these women exhibit a marked increase in 
relapse rate 3 months after delivery, when endogenous 
opioid levels are decreased [142, 143]. These findings 
suggest that one or more of the elevated opioids are act-
ing with relevant receptors to attenuate the pathogenesis 
of MS. However, Gironi et al. [144] have reported a 
reduction of β-endorphin levels in PBMCs from patients 
with clinically inactive MS, but demonstrated an increase 
of β-endorphin in PBMCs from patients experiencing 
a relapse. The same group also found that β-endorphin 
level varies in different forms of MS. The lowest PBMC 
β-endorphin level was observed in primary and second-
ary progressive forms of MS, while the highest level 
was found in patients with benign and relapsing remit-
ting forms of MS [145]. Treatment with IFN-β seems to 
induce an increase of this opioid in MS patients [144]. 
The increase of β-endorphin concentration during a clini-
cal relapse may represent a possible control mechanism 
aimed at downregulating the inflammatory process.

Opioids have been used to treat EAE or MS. Met-
enkephalin, an endogenous opioid, inhibited the onset 
and progression of EAE [146]. A preliminary clinical 
trial showed that intrathecally given met-enkephalin 
exerted a beneficial effect on 13 patients with chronic se-
vere progressive MS [147]. Rats treated with MR 2034, 
a kappa opioid receptor agonist, showed a pronounced 
suppression of EAE clinical signs, CNS histological le-
sions, and anti-myelin basic protein antibody production 
[148]. However, other reports have shown that naltrex-
one (NTX), a non-selective opioid receptor antagonist, 
has protective effects on both EAE animals and MS 
patients. Zagon et al. [149] demonstrated that low-dose 
NTX (LDN, 0.1 mg/kg) markedly reduced the sever-
ity and disease index of the treated mice, and over 33% 

of the MOG-treated animals receiving LDN treatment 
did not exhibit behavioral signs of disease. On the other 
hand, high-dose NTX (HDN, 10 mg/kg) displayed no 
beneficial effect. A 6-month phase II multi-center pilot 
trial with LDN has been carried out in 40 patients with 
PPMS. A significant reduction of spasticity was observed 
at the end of the trial [150]. The therapeutic effect of 
LDN might be explained by the elevated endogenous 
opioids and opioid receptors due to the temporary block-
ade of the opioid receptors [151-153].

These results suggest that endogenous opioids and 
their receptors may play important roles in the develop-
ment of EAE and MS, though the exact ligand, receptor 
or their mechanisms remain to be elucidated. Neverthe-
less, LDN, which has been successful in the treatment of 
Crohn’s disease [154], would represent a safe, non-toxic, 
and generically available agent for attenuating MS and 
possibly other autoimmune diseases.

Sphingosine-1-phosphate receptors
Sphingolipids were first identified in the ethanolic 

brain extracts in the 1870s and were named after the 
Greek mythological creature, Sphinx, because of their 
enigmatic nature [155]. Sphingosine-1-phosphate (S1P) 
represents a minor constituent of total sphingolipids. It 
is found abundantly in vertebrate blood and lymph. With 
the discovery of five S1P receptors [156, 157], designat-
ed S1P1-5, S1P is recognized as an important extracel-
lular lipid mediator. 

S1P receptors are ubiquitously but differentially ex-
pressed on all cells, including a wide range of cells that 
are involved in the development of MS. Genetic deletion 
of S1P1 in mice demonstrated that this receptor plays 
key roles in angiogenesis and vascular maturation [158], 
immune cell trafficking [159], endothelial barrier func-
tion [160], and vascular tone [110]. Like S1P1, S1P2 
and S1P3 are also widely expressed. S1P4 has a more 
restricted expression pattern and is detectable predomi-
nantly within immune compartments and leukocytes 
[161], and may play a role in regulating T-cell cytokine 
production [162]. S1P5 is expressed primarily in the 
white matter of the CNS, but its precise role remains to 
be clarified.

MS is generally believed to be caused by the invasion 
of autoreactive T cells into the CNS, which leads to de-
myelination and axonal damage. The S1P1 receptor has 
been shown to regulate the recirculation of lymphocytes 
[163-165] and their egress from secondary lymphatic 
organs [159]. Therefore, targeting S1P1 to reduce circu-
lating T cells might be an effective treatment for MS and 
other autoimmune diseases. 

Recently, fingolimod (FTY720), a non-selective S1P 
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receptor modulator, has been approved by the US FDA 
as the first oral, first-line treatment for RRMS. It outper-
formed the established first-line therapy IFN-β1a in a 
1-year, double-blind, and double-dummy phase III study 
(known as TRANSFORMS) [166]. In animal studies, 
prophylactic administration of fingolimod completely 
prevented development of EAE features, whereas thera-
peutic administration significantly reduced the clinical 
severity of EAE [167, 168]. As a structural analog of 
sphingosine [169], fingolimod is phosphorylated in vivo 
by sphingosine kinase 2 [170] to produce fingolimod-
phosphate, which binds to four of the five S1P recep-
tors (S1P1 and S1P3-5) with high affinity. Fingolimod-
phosphate initially activates lymphocyte S1P1 but 
subsequently induces S1P1 internalization and down-
regulation, which prevents lymphocyte egress from lym-
phoid tissues, therefore reducing pathogenic lymphocyte 
infiltration into the CNS [163, 171]. Fingolimod is also 
reported to ameliorate EAE by suppressing both cellular 
and humoral immune responses [172].

Fingolimod is able to cross the BBB [173], and may 
therefore have direct CNS effects, which is unique com-
pared to other immunologically targeted MS therapies. 
S1P receptors are also expressed in many CNS cells and 
have been shown to influence cell proliferation, morphol-
ogy, and migration [174, 175]. S1P and S1P1 have been 
implicated to mediate the migration of neural stem cells 
towards sites of injury in the spinal cord [175]. Recent 
studies in EAE also suggested a key role of the neuronal 
S1P1 in disease progression [176]. Re-myelination has 
been documented in human MS lesions and animal 
models [177, 178]. S1P1 and S1P5 are both expressed 
on oligodendrocytes and may be involved in the re-my-
elination process. Fingolimod can increase the number 
of both progenitor and mature oligodendrocytes in vitro. 
It can protect oligodendrocytes from cell death induced 
by cytokines or the withdrawal of growth factors, and 
modulate process outgrowth [179, 180]. High levels of 
S1P1 and S1P3 are also found in astrocytes [181], a glial 
cell type that might act like immune cells to enhance the 
immune responses and inhibit myelin repair. S1P induces 
activation and proliferation of astrocytes in vitro, while 
injection of S1P into the striata of mouse brains induced 
astrogliosis [182]. In a recent study with conditional 
knockout mice, EAE was attenuated and fingolimod effi-
cacy was lost in mutants lacking S1P1 on GFAP-express-
ing astrocytes but not on neurons [183]. Receptor rescue 
and pharmacological experiments supported the loss of 
S1P1 on astrocytes via functional antagonism by fingoli-
mod-phosphate as a primary mechanism of fingolimod. 
S1P1 is also expressed and plays important physiological 
roles in neurons. Genetic deletion of S1P1 resulted in 

defective neuronal development [184]. Fingolimod has 
been shown to display neuroprotective effect in both in 
vitro and EAE animal models [185]. 

Fingolimod thus represents a new generation of medi-
cines for MS treatment with the advantages of oral 
administration, and beneficially affecting not only the 
immune system to reduce inflammatory damage but also 
the CNS to promote neuroprotection and repair. Fingoli-
mod is a non-selective sphingosine receptor modulator. 
Targeting other receptors, especially the S1P3 receptor, 
has been reported to induce certain cardiovascular side 
effects [186]. Pharmaceutical companies are currently 
developing more specific S1P1 agonists to avoid such 
potential problems. For example, ACT-128800, an orally 
available S1P1 receptor agonist ~650-fold more selec-
tive for human S1P1 over S1P3 than the natural ligand, 
is currently under phase II clinical investigation to treat 
RRMS [187-189]. 

Other GPCRs
Many other GPCRs have also been reported to be in-

volved in the pathogenesis of EAE. For example, block-
ing dopamine D2-like-receptors (including D2, D3, and 
D4) with antagonist L750667 promoted DC-mediated 
Th17 differentiation [190]. This is consistent with a 
previous report that D2 receptor agonist bromocriptine 
displayed therapeutic effect on acute and relapsing EAE 
models [191]. In contrast, SCH23390, a D1-like-receptor 
antagonist, inhibited DC-mediated Th17 differentiation 
and prevented EAE in mice [190].

Histamine also plays a key regulatory role in EAE 
and exerts its effect through four GPCRs designated H1, 
H2, H3, and H4 receptors. Histidine decarboxylase is 
the necessary enzyme to make histamine. The histidine 
decarboxylase-deficient mice are genetically unable to 
make histamine. EAE was found to be significantly more 
severe in these animals [192]. H3R knockout mice also 
developed a more severe EAE and neuro-inflammation 
compared with the wild-type animals [193], indicating 
that the immunosuppressive effect of histamine might be 
mediated via H3R. However, H1R-deficient mice have 
been found to be more resistant to EAE induction than 
wild-type controls [194]. Treatment with pyrilamine or 
hydroxyzine, the H1R antagonists, led to reduced clinical 
signs of EAE and brain mast cell activation [195-197]. 
Results from a pilot open-label clinical trial also indicat-
ed that hydroxyzine can partially inhibit brain mast cell 
activation and reduce MS symptoms [198].

Increasing evidence suggests that the platelet-activat-
ing factor (PAF) and its receptor (PAFR) are involved 
in EAE and MS pathogenesis. PAF was upregulated in 
peripheral-blood leukocytes during EAE induction, and 
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the receptor antagonist treatment or gene knockout led to 
alleviation of clinical signs [195, 196, 199, 200]. Poly-
morphism of PAFR gene has also been identified to be 
correlated with the susceptibility to MS in human [201].

Apart from leukotrienes, prostaglandins form another 
family of important signaling molecules derived from 
arachidonic acid. Prostaglandin E2 (PGE2) was found 
to be increased in the CSF of MS patients [118, 202]. 
Among the four PGE2 receptors, EP1-EP4, only the 
EP4-knockout significantly suppressed EAE induction. 
This was mimicked in wild-type mice and to a greater 
extent, in EP2-knockout mice by administration of the 
EP4 antagonist ONO-AE3-208 during the immuniza-
tion or preclinical phase [203, 204]. But ONO-AE3-208 

administration at EAE onset had little effect on disease 
severity. In contrast, administration of the EP4 agonist 
ONO-AE1-329 at EAE onset delayed and suppressed 
disease progression as well as inhibited the associated 
increase in permeability of the BBB [204]. Thus, PGE2 
exerts dual functions in EAE, facilitating Th1 and Th17 
cell generation redundantly through EP4 and EP2 during 
immunization and attenuating invasion of these cells into 
the brain by protecting the BBB integrity through EP4 
[203, 204].

Other GPCRs that have been reported to be involved 
in EAE or MS pathogenesis, such as serotonin receptors, 
GPR30, and a list of peptide receptors, are summarized 
in Table 4.

Table 4 Other GPCRs that may play a role in EAE pathogenesis
Receptor                                                     Modulation  EAE severity Ref. no.
or ligand                         Pharmacological    
 Agonist Antagonist    
AT1R  Losartan  Alleviated [279, 280]
Bdkrb1 R838   Alleviated [281]
Bdkrb2   Knockout Alleviated [282]
D1-like-R  SCH23390  Alleviated [190]
EDNRA  BQ-123  Alleviated [283]
EP1   Knockout Comparable [204]
EP2   Knockout Comparable [204]
EP3   Knockout Comparable [204]
EP4   Knockout Alleviated [204]
  ONO-AE3-208  Alleviated [203, 204]
G2A receptor   Knockout Comparable [284]
GALR2   Loss-of-function  Enhanced [285]
   mutant
GPR30  Luzindole  Alleviated [286]
H1R  pyrilamine,   Alleviated [195-198]
  hydroxyzine
   Knockout Alleviated [194]
H3R   Knockout Enhanced [193]
HTR1A  WAY100635  Alleviated [287]
NK1R  CP-96,345  Alleviated [288]
NPY1R [F7,P34]NPY; [D-His26]NPY   Alleviated [289]
  BIBO3304  Enhanced [289]
NPY5R [Ala31,Aib32]NPY   Comparable [289]
Galanin   Transgenic Alleviated [285]
   expression
   Loss-of-function Enhanced [285]
   mutant
Neurokinin-1   Knockout Alleviated [290]
PACAP   Knockout Enhanced [291]

Genetic
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Conclusion

As summarized herein, a large body of evidence from 
both in vivo and in vitro studies suggests that GPCRs me-
diate important physiological or pathological functions 
in the development of MS (Figure 1). Targeted blockade 
or activation of GPCR-mediated signaling may provide 
novel approaches to treating MS. Given the current lack 
of effective pharmacological targets for the treatment of 
MS, the continued identification and study of GPCRs in 
MS pathogenesis may eventually lead to major break-
throughs and new pharmacological strategies. One of 
the best examples of targeting GPCRs to treat MS is the 
case of fingolimod (FTY720), an S1P1 receptor modu-
lator. Application of this drug significantly reduced the 
relapse rates, the risk of disability progression, and MRI 
measures of disease activity in MS patients, as compared 
with IFN-β1a or placebo. More interestingly, as a wide 
variety of drugs or compounds targeting GPCRs have 
already been developed for the treatment of other hu-
man diseases, repositioning of these agents might greatly 
facilitate the development of novel therapies for MS or 
other autoimmune diseases. We anticipate an exciting fu-
ture for the discovery of new drugs for MS by targeting 

GPCRs.
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