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Embryonic signaling pathways often lead to a switch from default repression to transcriptional activation of target 
genes. A major consequence of Wnt signaling is stabilization of β-catenin, which associates with T-cell factors (TCFs) 
and ‘converts’ them from repressors into transcriptional activators. The molecular mechanisms responsible for this 
conversion remain poorly understood. Several studies have reported on the regulation of TCF by phosphorylation, 
yet its physiological significance has been unclear: in some cases it appears to promote target gene activation, in oth-
ers Wnt-dependent transcription is inhibited. This review focuses on recent progress in the understanding of context-
dependent post-translational regulation of TCF function by Wnt signaling.
Keywords: TCF; Wnt; phosphorylation; β-catenin; Homeodomain-interacting protein kinase; Nemo-like kinase
Cell Research (2011) 21:1002-1012. doi:10.1038/cr.2011.86; published online 24 May 2011

npgCell Research (2011) 21:1002-1012.
© 2011 IBCB, SIBS, CAS    All rights reserved 1001-0602/11  $ 32.00 
www.nature.com/cr

Introduction

Wnt pathways play essential roles in cell fate de-
termination, cell polarity and cell proliferation during 
embryonic development. The known branches of the 
Wnt signaling pathway involve the canonical, β-catenin-
dependent pathway [1, 2], the planar cell polarity path-
way, whose core players include Frizzled, Dishevelled, 
Van Gogh/Strabismus, Flamingo and Prickle [3, 4], and 
the less-studied Ca2+/protein kinase C pathway [5, 6]. In 
conjunction with Frizzled cell surface receptors [7, 8], 
LRP5/6 receptors are responsible for Wnt1- and Wnt3a-
mediated signaling [5, 9], whereas ROR and RYK have 
been proposed to modulate cellular responses to Wnt5a 
[10-16]. Thus, the selectivity of the pathway for a spe-
cific branch appears to be determined by the specific Wnt 
ligands involved, the available Wnt receptors and co-
receptors, and relative ligand-receptor affinities. Despite 
this apparent simplicity, the outcome of signaling is com-
plex, because multiple pathways can be activated in par-
allel but to different degrees, depending on cell context.

 
The Wnt/β-catenin pathway

Since the original observation that the level of Arma-
dillo, the fly β-catenin homologue, is controlled by Wnt 

signaling [17], much work for the past 20 years has been 
focused on β-catenin, a multifunctional protein, with es-
sential roles in cell adhesion and target gene regulation 
[18-20]. Antisense depletion of β-catenin in Xenopus 
embryos [21] and its genetic knockouts in mice [22, 23] 
demonstrated a critical role for β-catenin in body axis 
specification and Wnt signaling. According to the con-
sensus view, a key regulatory point in the signal trans-
duction is the regulation of β-catenin. In the absence of a 
Wnt ligand, β-catenin undergoes proteosome-dependent 
degradation; Wnt stimulation inhibits this degradation, 
allowing β-catenin to enter the nucleus, associate with 
T-cell factor (TCF) proteins and activate target gene 
expression [1, 5]. Besides β-catenin stabilization, addi-
tional factors are likely to further contribute to β-catenin 
nuclear entry. Although TCF proteins play major roles 
in transcriptional activation and repression, the signaling 
mechanisms involved have remained poorly understood. 
Nevertheless, the strategic downstream position of TCFs 
in the signaling cascade, due to their direct interactions 
with many protein cofactors and target DNA sequences, 
predicts another nodal point for Wnt pathway regulation.

The TCF family and their cofactors

There is a single TCF gene in Drosophila (pangolin, 
dTCF) [24, 25] and in Caenorhabditis elegans (POP-
1) [26], whereas there are four distinct TCF genes in 
vertebrates. TCF proteins associate with transcriptional 
repressors, such as Groucho/Grg/TLE (transducin-like 
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enhancer of split) [27, 28], CtBP [29, 30], Kaiso [31-33], 
histone deacetylases (HDACs) and other factors, which 
maintain chromatin in the transcriptionally inactive state 
[34, 35] and could mediate TCF-dependent transcrip-
tional repression [28, 36-39]. The current model is that 
TCF proteins inhibit target genes when bound to Grou-
cho/TLE corepressors, while association with β-catenin 
blocks these interactions and converts TCFs into tran-
scriptional activators [1, 37, 40-43]. 

One of the better-studied models is the regulation 
of POP-1, the C. elegans TCF homologue, during the 
binary fate decision of the EMS progenitor cell. Asym-
metric division of the EMS progenitor generates the MS 
(mesodermal) cell and the E (endodermal) cell [44-46]. 
Both cells produce endoderm in pop-1 mutants, indicat-
ing that POP-1 normally suppresses endodermal fate in 
the MS cell lineage [26]. In the E cell, levels of nuclear 
POP-1 are reduced by MOM-2/Wnt signaling [47-49]. 
This POP-1 asymmetry requires LIT-1, a protein kinase 
that regulates asymmetric cell divisions [50] and pro-
motes the nuclear export of POP-1 [49, 51, 52]. Para-
doxically, the small amount of POP-1 that remains in the 
E-cell nucleus is required, together with SYS-1, a distant 
member of the β-catenin family [53, 54], for Wnt-depen-
dent activation of endoderm-specific end-1 and end-3 
target genes [44, 45, 47, 55-57]. POP-1 also functions as 
a transcriptional activator in T neuroblasts and somatic 
gonadal precursors, in which POP-1 and SYS-1 directly 
activate the ceh-22/tinman gene [47, 53, 54, 58]. These 
observations emphasize the dual function of POP-1 in 
transcriptional control. 

The complex roles of POP-1 in transcription are 
modulated by two of the four specialized members of the 
β-catenin family: SYS-1, WRM-1, BAR-1 and HMP-2 
[59, 60]. Whereas SYS-1 cooperates with POP-1 in tar-
get activation, WRM-1 serves to remove POP-1 from the 
nucleus of the E cell, thereby relieving transcriptional 
repression [51, 52]. BAR-1 is the canonical β-catenin 
that is regulated by glycogen synthase kinase (GSK)-
3-dependent phosphorylation and degradation, whereas 
HMP-2 largely functions in cell adhesion. These two 
proteins do not appear to be involved in POP-1 regula-
tion [47, 61].

In contrast to the single TCF genes that perform both 
positive and negative roles in transcriptional regula-
tion in C. elegans and Drosophila [24, 36, 43], the four 
conserved vertebrate TCF homologues: TCF1, LEF1, 
TCF3 and TCF4, appear to be more specialized, as well 
as partly redundant [1, 62]. LEF1−/− mouse embryos 
lack teeth, mammary glands, and hair and are deficient 
in neural crest development [63], whereas double knock-
outs of TCF genes display more severe phenotypes [64-

66]. Similarly, in Xenopus and zebrafish embryos, TCF 
proteins play diverse roles in dorsoventral patterning, 
CNS, neural crest and muscle development [67-72]. The 
observed differences in loss-of-function phenotypes can 
be attributed, at least in part, to the spatially and tempo-
rally restricted TCF expression patterns and the existence 
of multiple spliced forms [62, 73]. It is also possible that 
individual vertebrate TCFs have functions that are in-
dependent of their role in Wnt-regulated transcriptional 
regulation. TCF proteins are usually unable to function-
ally substitute for each other, arguing against the simple 
view that they function by allowing β-catenin binding to 
target promoters. Since TCF gene knockout and knock-
down phenotypes do not mimic β-catenin and Wnt loss-
of-function defects in a straightforward manner, it is im-
portant to understand the causes for these discrepancies 
and develop a mechanistic model that is consistent with 
available data. 

Regulation by phosphorylation

Accumulating evidence suggests that TCF proteins are 
phosphorylated in response to Wnt signals and this phos-
phorylation might be important for determining signaling 
outcome. In C. elegans, the phosphorylation of POP-1 is 
critical for POP-1 asymmetry and was proposed to pro-
mote signal-induced endodermal fate, although its physi-
ological significance with respect to Mom-2/Wnt signal-
ing remains to be fully established [48, 51, 52, 74-76]. In 
mammalian cells, Wnt1 can promote the phosphorylation 
of TCF4 [77], but there are conflicting reports regard-
ing the ability of Wnt5a to stimulate LEF-1 and TCF-
4 phosphorylation [77, 78]. In Xenopus embryos and 
mammalian cells, we find that TCF3, TCF4 and LEF1 
are phosphorylated in response to Wnt8 and Wnt3a, both 
in vitro and in vivo [79, 80] (Figure 1). TCF3 constructs 
with mutated phosphorylation sites function as constitu-
tive transcriptional repressors, indicating the essential 
role of this phosphorylation for signaling [79]. Thus, 
TCF phosphorylation appears to be a conserved mecha-
nism operating in parallel with β-catenin stabilization to 
control Wnt target gene activation [80].

Several protein kinases have been reported to phos-
phorylate TCF proteins (Figure 2). Casein kinase 1ε 
(CK1ε) can phosphorylate TCF3 and enhance TCF-β-
catenin complex formation, whereas GSK3β phosphory-
lates TCF3 to inhibit β-catenin-TCF3 interactions [81]. 
By contrast, casein kinase 1δ (CK1δ)-dependent phos-
phorylation has been reported to negatively influence 
LEF-1/β-catenin complex formation [82]. Phosphoryla-
tion by casein kinase 2 (CK2) promotes LEF-1 binding 
to chromatin [83], but reduces TCF-4 association with 
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plakoglobin/γ-catenin [84]. In C. elegans, LIT-1 phos-
phorylates POP-1 to promote its nuclear export [49, 51, 
52]. While NLK, the mammalian homologue of LIT-1, 
can phosphorylate TCF proteins to inhibit TCF4 binding 
to DNA and reduce Wnt signaling in mammalian cells 
[76, 78], it was also reported to promote Wnt signaling 
in zebrafish embryos [85]. Since NLK can be activated 
by oppositely acting Wnt1 and Wnt5 [77, 86], there is a 
need to explain its context-dependent functions.

Another family of protein kinases implicated in Wnt 
signaling are homeodomain-interacting protein kinases 
(HIPK1-4) [87, 88]. In the mouse, HIPK2 is expressed 
in multiple embryonic tissues, including the brain, heart, 
kidney and muscle [89]. HIPK2 has been implicated in 
transcriptional regulation, cell growth and apoptosis [90-
92], presumably by activating p53 [93-95] and/or c-Jun 
N-terminal kinase [96]. Embryos lacking both HIPK1 
and HIPK2 genes display severe exencephaly with ante-

Figure 1 Two conserved branches of the canonical Wnt pathway. In vertebrates, Wnt signaling acts to prevent β-catenin deg-
radation and promote its ability to activate transcription. SYS-1 is a functional substitute of β-catenin in the early C. elegans 
embryo. The other conserved signaling branch is to inhibit TCF3 (vertebrate embryos) or POP-1 (C. elegans) repressive ac-
tivity by phosphorylation.

Figure 2 HIPK2 and NLK/LIT-1 in Wnt signaling. The comparison of several properties of HIPK2 and NLK indicates that 
these kinases might function in the same signaling pathway during anteroposterior axis specification in vertebrate embryos. 
Casein kinases 1 and 2 as well as GSK3 are also involved in TCF phosphorylation (see text).
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rior neural tissue overgrowth and die between e9.5 and 
e12.5 [97]. HIPK2-mediated phosphorylation promotes 
proteasome-dependent degradation of CtBP [98, 99] and 
attenuates the repressive activity of Groucho [98]. The 
HIPK2/NLK complex was found to phosphorylate and 
degrade c-Myb in response to Wnt1 [100]. Other studies 
have reported both positive and negative effects of HIPK 
on Wnt/β-catenin signaling in mouse embryo fibroblasts 
[101, 102], Drosophila and Xenopus embryos [103, 104], 
but the underlying mechanisms remain to be fully eluci-
dated. Linking HIPK2 more directly to TCF regulation, 
a recent study has shown that HIPK2 acts to antagonize 
TCF3 activity, thereby promoting ventroposterior devel-
opment in Xenopus [79]. HIPK2 is required for Wnt8-
dependent TCF3 phosphorylation, which results in the 
removal of TCF3 from target promoters culminating in 
target gene activation [79].

Since both NLK and HIPK2 can phosphorylate ver-
tebrate TCF proteins and trigger their removal from 
promoter DNA, the question arises whether these two 
protein kinases function in the same or distinct molecular 
pathways (Figure 2). Interestingly, both HIPK2 and NLK 
have been found to control anteroposterior axis specifica-
tion in Xenopus and zebrafish embryos [79, 85]. The two 
NLK phosphorylation sites on LEF-1 [78] correspond to 
a subset of the Wnt8-dependent, HIPK2 phosphorylation 
sites within TCF3, while two additional clusters of phos-
phorylation sites appear to be specific for HIPK2 [79]. 
Both NLK and HIPK2 cooperate in Wnt-1-dependent 
degradation of c-Myb in CV-1 fibroblasts [100], and 
both kinases can be stimulated by TGFβ-activated kinase 
(TAK1) [75, 76, 100, 105, 106]. Interestingly, HIPK2 has 
been shown to phosphorylate and activate NLK in vitro 
[100]. Together, these observations identify HIPK2 and 
NLK as regulators of TCF activity, although it remains 
unclear whether they function in the same developmental 
process and act sequentially or in parallel. 

A new common branch of the Wnt pathway?

The Wnt/HIPK2-dependent TCF3 phosphorylation 
[79] illustrates the importance of TCF post-translational 
modification in vivo. While this pathway is similar to the 
Wnt/NLK/POP-1 pathway proposed for C. elegans [45, 
47] (Figure 1), the upstream regulators of both pathways 
are largely unknown. A priori, HIPK2 may be constitu-
tively required for this phosphorylation, or it may be ac-
tivated in response to a Wnt signal, as has been proposed 
for c-Myb regulation [100]. The latter possibility seems 
more likely since overexpressed β-catenin was unable on 
its own to upregulate TCF3 phosphorylation [79], sug-
gesting that Wnt signals regulate both β-catenin stability 

and HIPK2 activity. Interestingly, the ‘canonical’ LRP5/6 
receptor and the inhibition of GSK3 have been both im-
plicated in TCF3 phosphorylation [80]. Further research 
is needed to identify other intracellular intermediates in-
volved.

Mammalian TAK1 and its worm homologue MOM-
4 have been reported to function upstream of NLK/LIT-
1 [75-77, 100, 106]. Moreover, HIPK2 was proposed to 
act downstream of TAK1 in c-Myb degradation [100]. 
Although the direct activation of HIPK2 by TAK has not 
been demonstrated, it seems reasonable to hypothesize 
that TAK1 is one of the upstream components of the 
Wnt/HIPK2/TCF3 pathway. It is worth noting that, like 
HIPK2, TAK1 has been reported to play a role in Xeno-
pus ventroposterior development, although this function 
was attributed to its effects on BMP rather than Wnt 
signaling [107]. Since both BMP and Wnt signaling are 
involved in setting up ventroposterior gene expression 
in vertebrate embryos [108-110], TAK1 might be a mo-
lecular component of the Wnt signaling machinery that 
activates HIPK2 and NLK.

A commonly accepted function of β-catenin is co-
activation of TCF-dependent transcription. However, 
β-catenin appears to play a distinct novel role in Wnt/
HIPK2-dependent TCF3 phosphorylation. Whereas 
overexpression of β-catenin does not cause TCF3 phos-
phorylation, its depletion inhibits TCF3 phosphorylation 
[79]. Moreover, TCF3 harboring point mutations that 
prevent β-catenin binding is no longer phosphorylated in 
response to Wnt signals, suggesting that β-catenin func-
tions as a scaffold required for HIPK2 phosphorylation 
of TCF3 [79] (Figure 1). This is reminiscent of the role 
of WRM-1 in promoting LIT-1-mediated POP-1 phos-
phorylation [52]. On the other hand, WRM-1 only weak-
ly associates with POP-1, and β-catenin does not seem to 
activate HIPK2 in vivo, at least as judged by the lack of 
TCF3 phosphorylation upon overexpression of β-catenin 
alone [79]. 

The identification of signaling components that are 
involved in TCF phosphorylation in response to Wnt 
signals will assist in our understanding of Wnt signaling 
processes coordinating morphogenesis and cell fate de-
termination during embryonic development.

Mechanisms of target gene regulation

Canonical Wnt signaling has been thought to activate 
target genes by increasing the level of β-catenin, thereby 
favoring the formation of β-catenin/TCF complexes, and 
their binding to target promoters. Many proteins that 
bind to the β-catenin/TCF complex and regulate target 
gene transcription have been described but will not be 
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discussed here due to space limitations [42, 62, 111-114]. 
In the simplest scenario, the function of β-catenin might 
be to provide a transcriptional activation domain to the 
TCF protein (which binds DNA via its high mobility 
group (HMG) domain) [40, 115] (Figure 3). In another 
model, upon its binding to TCF proteins, β-catenin con-
verts them into transcriptional activators by outcompet-
ing transcriptional corepressors, such as Groucho, CtBP 
or HDACs [36, 37, 39, 43, 116]. Since both models pre-
sume the association of TCF with DNA, a phosphoryla-
tion event (such as that mediated by NLK or HIPK2) that 
causes the dissociation of TCF from the promoter would 
be predicted to inhibit both types of TCF-dependent gene 
activation [76, 77, 79, 86].

In the third case, phosphorylation of a repressor-type 
TCF, such as TCF3, and its subsequent displacement 
from promoter DNA would result in target gene activa-
tion. This mechanism is likely to operate for Vent gene 
activation in Xenopus and zebrafish early embryos. 
Vent2/Vent/Vox genes [117-121] are expressed in the 
ventrolateral region and are induced by Wnt8 [85, 122]. 
Vent genes encode homeodomain transcription factors 
that antagonize dorsal genes to establish the ventroposte-
rior embryonic domain [120, 121, 123]. Wnt8 activates 
a Vent2 reporter through the unique proximal TCF-
binding site [79]. Unexpectedly, a Vent2 reporter with the 
mutated TCF-binding site displays higher activity than 
the wild-type promoter and the in vivo depletion of Tcf3 
leads to wild-type reporter activation [79]. Finally, TCF3 
phosphorylation by HIPK2 or in response to a Wnt signal 

leads to the dissociation of TCF3 from the Vent promoter 
in vivo [79]. These observations establish an essential 
role for HIPK2-dependent phosphorylation in Vent2 
regulation by alleviation of TCF3-mediated repression. 

Since TCF3 is involved in the repression of a large 
number of genes in early embryos and stem cells [124-
128], other gene targets are likely to be controlled by 
this mechanism. The Cdx (caudal) and the Meis group 
genes, like Vent genes, are regulated by Wnt signaling 
during anteroposterior patterning [129-131] and contain 
multiple TCF-binding sites in their DNA regulatory ele-
ments [132-134]. Like Vent genes, these genes are also 
controlled by TCF3-mediated repression [79]. Moreover, 
other characterized β-catenin responsive genes, includ-
ing Siamois, have been found to contain negative regu-
latory TCF-binding sites, implying similar regulation 
[135, 136]. Thus, the HIPK2 phosphorylation-dependent 
mechanism of TCF3 displacement is likely to be of broad 
significance in gene activation. 

Similar to HIPK2-mediated TCF3 phosphorylation, 
NLK is known to reduce TCF4 and LEF-1 in vitro affini-
ties for promoter DNA [76] and LIT-1-dependent POP-1 
phosphorylation results in POP-1 nuclear export [51]. 
The sites of POP-1 phosphorylation by LIT-1 are distinct 
from P2/3/4 sites of TCF3, but they are located in the 
same general area of the protein, upstream of the DNA-
binding domain [51], arguing for the same mechanism 
of transcriptional derepression. How might HIPK2- or 
NLK-mediated phosphorylation trigger TCF protein dis-
sociation from the promoter? Since the phosphorylation 

Figure 3 Mechanisms of target gene regulation by Wnt-dependent TCF phosphorylation. (A) Wnt signaling results in the 
binding of a transcriptional coactivator (β-catenin) to TCF3, stimulating a target gene. (B) Co-repressor (coR, e.g., Groucho) 
removal converts TCF3 from a repressor into an activator, resulting in target gene activation. (C) Target gene is activated 
when the complex of β-catenin, TCF3 and HIPK2 forms, leading to decreased affinity of TCF3 to promoter DNA.



www.cell-research.com | Cell Research

Sergei Y Sokol
1007

npg

is outside of the DNA-binding HMG domain, the most 
likely possibility is a conformational change in the pro-
tein leading to allosteric regulation. The proposed phos-
phorylation sites are located in the region of TCF3 that is 
responsible for Groucho binding (sometimes called the 
context-dependent region) [62, 78]. Therefore, the alter-
native explanation is that the phosphorylation modulates 
the interaction of TCF3 with Groucho/TLE, HDACs or 
other cofactors [35, 38, 111, 113, 114, 137, 138], which 
may be necessary for optimal chromatin binding. Among 
other potential TCF3 regulators is Dishevelled, which 
shuttles to the nucleus [139], interacts with HIPK1 [104], 
and stabilizes β-catenin/TCF interactions [140]. Of inter-
est, TCF1 has been reported to undergo nuclear export 
[141], but this is unlikely to be regulated by the same 
phosphorylation event, since the relevant P2/3/4 sites are 
not present in TCF1. Thus, HIPK and NLK are likely to 
function together with other components of transcription 
regulatory machinery to regulate Wnt target genes.

Conservation of HIPK2 phosphorylation sites in dif-
ferent TCF proteins, including TCF3, TCF4 and LEF1 
[79, 80], provides a possible explanation for the context-
dependent function of HIPK in Wnt signaling. Based 
on the upregulation of the Wnt target gene cyclin D1 
in HIPK2−/− mouse embryo fibroblasts and studies in 
Xenopus, HIPK homologs have been proposed to sup-
press Wnt target gene expression [101, 102, 104]. In 
contrast, Xenopus HIPK2 and Drosophila HIPK were 
shown to stimulate Wnt target genes [79, 103]. In a ver-
tebrate study, HIPK2 did not show a significant effect on 
β-catenin [79], as reported for Drosophila embryos [103], 

indicating significant divergence of HIPK molecular sub-
strates in fly and vertebrate embryos. These conflicting 
observations are resolved in a model, in which HIPK2 
plays a positive or negative signaling role, depending on 
the functional properties of TCF proteins that are pres-
ent in the embryonic tissue. Specifically, HIPK2 would 
inhibit the pathway when an activator type TCF, such 
as LEF1, is phosphorylated, but would activate it when 
phosphorylating the repressive form of TCF (TCF3) 
(Figure 4). 

Whereas different TCF proteins are known to play 
diverse roles in early development [70], the mechanistic 
explanation for Wnt pathway regulation at the level of 
TCF has been missing. The same explanation for context 
dependence may be applicable to NLK, which has also 
been reported to function in Wnt signaling in both posi-
tive and negative manners [85, 86]. One apparent contra-
diction relates to the similarity of lit-1 and pop-1 mutant 
phenotypes in somatic gonadal precursors in C. elegans 
that implies synergistic rather than antagonistic functions 
[142]. This synergy could be misleading, as both the ex-
cess of POP-1 in lit-1 mutants and the lack of POP-1 in 
pop-1 mutants would be inhibitory to ceh-22 expression. 
Additional experiments are necessary to find out whether 
the phosphorylation of additional molecular substrates by 
LIT-1 is required for the regulation of POP-1-dependent 
transcription in this system.

Conclusions

Recent studies point to the significance of TCF phos-

Figure 4 Context-dependent function of HIPK2 in Wnt signaling. A positive or negative role of HIPK2 in Wnt signaling de-
pends on the availability and type of TCF proteins that are present in the responding cell. HIPK2 would inhibit the pathway 
upon phosphorylation of an activator type TCF, such as LEF1, but would activate it upon phosphorylation of a repressor, such 
as TCF3.
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phorylation, as a distinct downstream Wnt signaling tar-
get regulated in parallel with β-catenin. Wnt-dependent 
activation of HIPK2 and NLK, that phosphorylate TCF, 
is predicted to lead to context-dependent regulation of 
target genes, determined by the availability and type of 
TCF protein(s) present. While other molecular compo-
nents of this pathway remain largely to be discovered, 
existing knowledge is consistent with the prediction that 
Wnt-dependent TCF phosphorylation is a general and 
conserved point of regulation from worms to mammals. 
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