

# Structural basis of pre-mRNA recognition by the human cleavage factor $I_m$ complex

Heng Li<sup>1,2</sup>, Shuilong Tong<sup>1,2</sup>, Xu Li<sup>1,2</sup>, Hui Shi<sup>1,2</sup>, Zheng Ying<sup>1</sup>, Yongxiang Gao<sup>1,2</sup>, Honghua Ge<sup>1,2</sup>, Liwen Niu<sup>1,2</sup>, Maikun Teng<sup>1,2</sup>

<sup>1</sup>Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; <sup>2</sup>Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei 230026, China

The cleavage factor  $I_m$  (CF  $I_m$ ), consists of a 25 kDa subunit (CF  $I_m$ 25) and one of three larger subunits (CF  $I_m$ 59, CF  $I_m$ 68, CF  $I_m$ 72), and is an essential protein complex for pre-mRNA 3'-end cleavage and polyadenylation. It recognizes the upstream sequence of the poly(A) site in a sequence-dependent manner. Here we report the crystal structure of human CF  $I_m$ , comprising CF  $I_m$ 25 and the RNA recognition motif domain of CF  $I_m$ 68 (CF  $I_m$ 68RRM), and the crystal structure of the CF  $I_m$ -RNA complex. These structures show that two CF  $I_m$ 68RRM molecules bind to the CF  $I_m$ 25 dimer via a novel RRM-protein interaction mode forming a heterotetramer. The RNA-bound structure shows that two UGUAA RNA sequences, with anti-parallel orientation, bind to one CF  $I_m$ 25-CF  $I_m$ 68RRM heterotetramer, providing structural basis for the mechanism by which CF  $I_m$  binds two UGUAA elements within one molecule of pre-mRNA simultaneously. Point mutation and kinetic analyses demonstrate that CF  $I_m$ 68RRM can bind the immediately flanking upstream region of the UGUAA element, and CF  $I_m$ 68RRM binding significantly increases the RNA-binding affinity of the complex, suggesting that CF  $I_m$ 68 makes an essential contribution to pre-mRNA binding.

*Keywords*: cleavage factor I<sub>m</sub> (CF I<sub>m</sub>); pre-mRNA processing; poly(A) site recognition; RRM domain; RNA binding *Cell Research* (2011) **21**:1039-1051. doi:10.1038/cr.2011.67; published online 12 April 2011

# Introduction

Eukaryotic pre-mRNAs are synthesized and post-transcriptionally modified in the nucleus, before being exported into the cytoplasm to serve as templates for protein synthesis. The post-transcriptional modifications comprise 5'-end capping, splicing and 3'-end formation of the pre-mRNA. The maturation of the 3'-ends of most mRNA is catalyzed by multiple protein complexes, and requires the endonucleolytic cleavage of primary transcripts and the addition of poly(A) tails to the upstream cleavage products.

In mammals, the factors that are required for mRNA

RNA p

Correspondence: Maikun Teng<sup>a</sup>, Liwen Niu<sup>b</sup> <sup>a</sup>Tel: 86-551-3606314; Fax: 86-551-3601443

E-mail: mkteng@ustc.edu.cn bE-mail: lwniu@ustc.edu.cn

Received 3 August 2010; revised 25 October 2010; accepted 17 December 2010; published online 12 April 2011

maturation in vitro include the cleavage and polyadenylation specificity factor (CPSF), cleavage stimulatory factor (CstF), cleavage factors I<sub>m</sub> and II<sub>m</sub> (CF I<sub>m</sub> and CF II<sub>m</sub>), poly(A) polymerase (PAP) and nuclear poly(A) binding protein (PABN2). The cleavage reaction requires CPSF, CstF, CF I<sub>m</sub>, CF II<sub>m</sub>, and PAP. CPSF binds the highly conserved AAUAAA hexamer upstream of the cleavage site, and CstF binds the GU/U-rich sequence downstream of the cleavage site [1]. CPSF and CstF interact to form a stable complex before binding the premRNA to recognize the two elements in vivo [2, 3]. CF I<sub>m</sub> binds the pre-mRNA substrate in the vicinity of the poly(A) site concomitantly with CPSF. This stabilizes the binding between CPSF and the AAUAAA hexamer, facilitating pre-mRNA 3'-end processing complex assembly, and therefore enhances the rate and overall efficiency of poly(A) site cleavage in vitro [4-6]. Sequencespecific binding of CF I<sub>m</sub> to pre-mRNA directs A(A/U) UAAA-independent poly(A) addition through interaction with the poly(A) polymerase and a CPSF subunit, hFip1 [7]. After cleavage, CPSF remains bound to the upstream

1040

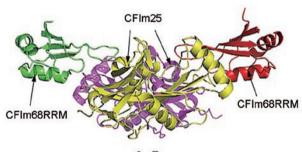
cleavage fragment, and recruits PAP onto the 3'-end of pre-mRNA. It also cooperates with PABN2 in the addition of a 250-nucleotide long poly(A) tail to the upstream cleavage fragment [8]. SELEX analysis has shown that CF  $I_m$  recognizes a five-nucleotide element, UGUAN (N = A > U  $\geq$  C/G) with high affinity [7]. When added to partially purified 3'-end processing factors, recombinant CF  $I_m$  is sufficient to reconstitute poly(A) site cleavage activity *in vitro* (the CF  $I_m$  complex used in this study was a CF  $I_m$ 25-CF  $I_m$ 68 complex, as discussed further below) [5]. Repression of CF  $I_m$  activity by knocking down CF  $I_m$ 25 does not affect HeLa cell viability, but increases the usage of the upstream poly(A) site, suggesting that CF  $I_m$ 25 has an important role in poly(A) site selection [9].

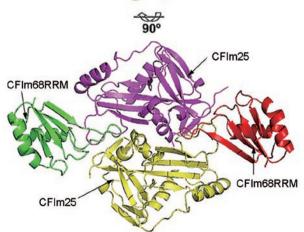
CF I<sub>m</sub> has been characterized as a heterodimer, consisting of a 25 kDa subunit (CF I<sub>m</sub>25) and one of three larger subunits (CF I<sub>m</sub>59, CF I<sub>m</sub>68 or CF I<sub>m</sub>72) [5]. CF I<sub>m</sub>25, which is also known as NUDT21 or CPSF5, is a 227-amino acid polypeptide, which is highly conserved in metazoan, and which contains a nucleoside diphosphate linked to some other moiety, x (NUDIX) hydrolase domain (residues 79-203) [10]. CF I<sub>m</sub>68, a member of the SR family of splicing factors, is a 551-amino acid polypeptide, which features an RNA recognition motif (RRM) domain at its N-terminal region, a central proline-rich region, and a C-terminal arginine/serine-rich (RS) domain. The RRM domain, which is also known as a RNAbinding domain (RBD) or ribonucleoprotein domain (RNP), is a motif found commonly in all organisms. It is characterized by an RNP1 consensus sequence (K/R-G-F/Y-G/A-F/Y-V/I/L-X-F/Y) and an RNP2 consensus sequence (V/I/L-F/Y-V/I/L-X-N/L) formed by aromatic and positively charged residues [11-13]. The RS domain is required for protein-protein interactions with other RS domains [1, 14].

In this study, we report the structure of CF I<sub>m</sub>, comprising CF I<sub>m</sub>25 (residues 34-227) and the RRM domain of CF I<sub>m</sub>68 (CF I<sub>m</sub>68RRM, residues 78-159), and the structure of a CF I<sub>m</sub>25-CF I<sub>m</sub>68RRM-RNA complex. The structural and mutational data reveals a novel RRM-protein binding mode, in which two CF I<sub>m</sub>68RRM molecules bind to a CF I<sub>m</sub>25 homodimer to form a heterotetramer. The structure of the CF I<sub>m</sub>-RNA complex shows that two UGUAA RNA sequences, with anti-parallel orientation, bind simultaneously to one CF I<sub>m</sub>25-CF I<sub>m</sub>68RRM heterotetramer. Kinetic analyses demonstrate that the complex assembly increases RNA-binding affinity, and subsequent mutagenesis analyses reveal that CF I<sub>m</sub>68 interacts with the immediately flanking upstream region of the UGUAA element via the L<sub>3</sub> loop of the RRM domain of CF I<sub>m</sub>68.

#### Results

CF I<sub>m</sub>68RRM is sufficient for CF I<sub>m</sub>25 binding


In an in vitro binding assay, the N-terminal region of CF I<sub>m</sub>68 (CF I<sub>m</sub>68N, residues 1-226) has been shown to interact with CF I<sub>m</sub>25 [15]. The central and C-terminal regions of CF I<sub>m</sub>68 (residues 209-551) do not interact with CF I<sub>m</sub>25 [15]. We have carried out detailed characterization of the region of CF I<sub>m</sub>68 responsible for CF I<sub>m</sub>25 binding. Pull-down assays showed that both CF I<sub>m</sub>68N and CF I<sub>m</sub>68RRM bind to GST-CF I<sub>m</sub>25 (Supplementary information, Figure S1A). As the molecular weight of CF I...68N is similar to that of GST alone, the GST-Rtt106p fusion was used as a negative control in binding studies. We also tested whether the N-terminal extension (RRMN, residues 1-80) or the C-terminal extension (RRMC, residues 160-226) of CF I<sub>m</sub>68RRM interacts with CF I<sub>m</sub>25. Immunoblot analysis showed neither His-MBP-RRMN nor His-MBP-RRMC binds to GST-CF I<sub>m</sub>25 (Supplementary information, Figure S1B). These results demonstrate that the RRM domain of CF I<sub>m</sub>68 is sufficient for CF I<sub>m</sub>25 binding.


Overall structure of the CF I<sub>m</sub>25-CF I<sub>m</sub>68RRM complex

To better characterize CF I<sub>m</sub>, we attempted to determine the structure of the CF I<sub>m</sub>25-CF I<sub>m</sub>68RRM complex using X-ray crystallography (Table 1). Crystals obtained from the full-length CF I<sub>m</sub>25 in a complex with CF I<sub>m</sub> 68RRM were not of an adequate quality to allow data collection. In the structure of apo-CF I<sub>m</sub>25, residues 1-20 were not observed in the electron density map and residues 21-32 formed an extended loop structure [16]. To obtain crystals for high-resolution studies, a truncated CF I<sub>m</sub>25 protein, with residues 1-33 removed, was constructed. A crystal, which diffracted to a resolution of 2.7 Å, was obtained and the structure was subsequently determined (see Materials and Methods for details). The CF I<sub>m</sub>25-CF I<sub>m</sub>68RRM complex was found to be a heterotetramer (approximate dimensions of 95  $\rm \mathring{A} \times 75 \ \mathring{A} \times 60 \ \mathring{A}$ ), with a pseudodyad passing through the heterotetramer, relating the pair of heterodimers (Figure 1). The heterotetrameric state of the CF I<sub>m</sub>25-CF I<sub>m</sub>68RRM complex was confirmed by sizeexclusion chromatography, with the complex eluting with an apparent molecular weight of around 61.5 kDa (Supplementary information, Figure S2B and S2C). As the molecular weights of CF I<sub>m</sub>25 and CF I<sub>m</sub>68RRM are 24 and 10 kDa, respectively, this result suggests that the CF I<sub>m</sub>25-CF I<sub>m</sub>68RRM complex exists as a heterotetramer in solution. The heterotetrameric state is also consistent with previous reports that two subunits of CF I<sub>m</sub> form a heterotetramer in solution [17].

Table 1 Data collection and refinement statistics

| Data collection statistics                          |                                              |                                                  |  |  |  |
|-----------------------------------------------------|----------------------------------------------|--------------------------------------------------|--|--|--|
|                                                     | CF I <sub>m</sub> 25-CF I <sub>m</sub> 68RRM | CF I <sub>m</sub> 25-CF I <sub>m</sub> 68RRM-RNA |  |  |  |
| Space group                                         | C2                                           | P21                                              |  |  |  |
| Cell dimensions                                     | a = 160.44  Å,                               | a = 104.78  Å,                                   |  |  |  |
|                                                     | b = 105.69  Å,                               | b = 129.42  Å,                                   |  |  |  |
|                                                     | c = 147.08  Å,                               | c = 111.16  Å,                                   |  |  |  |
|                                                     | $\alpha = \gamma = 90.00^{\circ}$ ,          | $\alpha = \gamma = 90.00^{\circ}$ ,              |  |  |  |
|                                                     | $\beta = 112.72^{\circ}$ ,                   | $\beta = 94.01^{\circ}$ ,                        |  |  |  |
| Wavelength (Å)                                      | 1.000                                        | 1.000                                            |  |  |  |
| Resolution (Å)                                      | 30.0-2.7 (2.77-2.70) <sup>a</sup>            | 50.0-2.9 (2.98-2.90) <sup>a</sup>                |  |  |  |
| $R_{\text{merge}} (\%)^{c}$                         | 8.3 (38.2) <sup>a</sup>                      | 9.1 (22.2) <sup>a</sup>                          |  |  |  |
| $I/\sigma$ (I)                                      | 14.7 (3.1) <sup>a</sup>                      | 12.4 (3.5) <sup>a</sup>                          |  |  |  |
| Completeness (%)                                    | 98.9 (99.3) <sup>a</sup>                     | 95.92 (74.42) <sup>a</sup>                       |  |  |  |
| Redundancy                                          | 3.4                                          | 3.0                                              |  |  |  |
| Refinement statistics                               |                                              |                                                  |  |  |  |
| Resolution (Å)                                      | 15.0-2.7                                     | 50.0-2.9                                         |  |  |  |
| Number of reflections                               | 58226                                        | 59607                                            |  |  |  |
| $R_{\text{work}} / R_{\text{free}} (\%)^{\text{c}}$ | 21.4/26.5                                    | 22.6/27.6                                        |  |  |  |
| Number of atoms in protein                          | 13257                                        | 17768                                            |  |  |  |
| Number of water molecules                           | 252                                          | 69                                               |  |  |  |
| Rmsd bond (Å)                                       | 0.0105                                       | 0.006                                            |  |  |  |
| Rmsd angle (°)                                      | 1.326                                        | 1.005                                            |  |  |  |
| B-value (Å <sup>2</sup> )                           | 36.4                                         | 27.8                                             |  |  |  |
| Most favoured (%)                                   | 95.5                                         | 97.3                                             |  |  |  |
| Additional allowed (%)                              | 4.4                                          | 2.7                                              |  |  |  |
| Outlier (%)                                         | 0.1                                          |                                                  |  |  |  |





Values in parentheses correspond to the highest resolution shell.

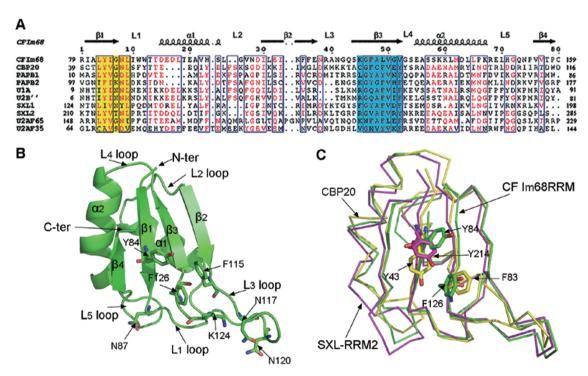
**Figure 1** Overall structure of the CF  $I_m25$ -CF  $I_m68RRM$  complex. View of the CF  $I_m25$ -CF  $I_m68RRM$  complex in two orientations. The lower ribbon diagram of the complex is rotated by 90° around the horizontal axis relative to the upper one. A CF  $I_m25$  dimer (yellow and magenta) binds two CF  $I_m68RRM$  molecules (green and red) forming a heterotetramer.

<sup>&</sup>lt;sup>a</sup> High-resolution shell is shown in parentheses.

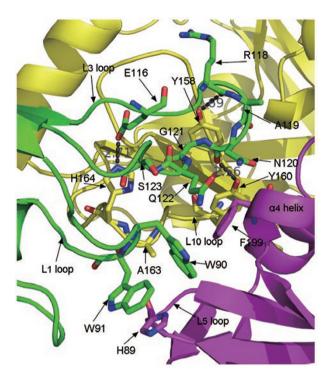
 $<sup>^{\</sup>rm b}$   $R_{\rm merge} = \Sigma |I_i - \langle I \rangle| / \Sigma |I|$ , where  $I_i$  is the intensity of an individual reflection and  $\langle I \rangle$  is the average intensity of that reflection.

 $<sup>^{\</sup>rm c}R_{\rm work}=\Sigma||{\rm F}_{\rm obs}|-|{\rm F}_{\rm calc}||/\Sigma|{\rm F}_{\rm obs}|$  for all reflections and  $R_{\rm free}=\Sigma||{\rm F}_{\rm obs}|-|{\rm F}_{\rm calc}||/\Sigma|{\rm F}_{\rm obs}|$ , calculated on the 5% of data excluded from refinement.

1042


## Structure of CF I, 68RRM

Although the sequence identity of CF I<sub>m</sub>68RRM with other RRM domains is less than 30%, CF Im68RRM adopts the classical compact αβ sandwich structures observed in other RRM domains, with a topology of  $\beta_1\alpha_1\beta_2\beta_3\alpha_2\beta_4$  (Figure 2A). Residues 80-86 ( $\beta_1$ ), 110-114 ( $\beta_2$ ), 127-131 ( $\beta_3$ ), 155-158 ( $\beta_4$ ) constitute the fourstranded anti-parallel β-sheet arranged in the order of  $\beta_4\beta_1\beta_3\beta_2$ , from left to right, when facing the sheet, and two  $\alpha$  helices, the  $\alpha_1$  helix (residues 94-104) and the  $\alpha_2$ helix (residues 134-146), pack against the  $\beta$ -sheet (Figure 2B). The RNP1 motif (residues 124-KGFALVGV-131) and the RNP2 motif (residues 83-LYIGNL-88) are located in the  $\beta_3$  and  $\beta_1$  strands, respectively. CF I<sub>m</sub>68RRM has only 26% and 22% sequence identities with the RRM domain of CBP20 [18, 19] and the second RRM domain of sex-lethal protein (SXL-RRM2) [20], respectively. However, the program DALI [21] revealed that CF I<sub>m</sub>-68RRM is structurally similar to both CBP20 (Z score = 12.5) and SXL-RRM2 (Z score = 13.1). Superimposition of CBP20 and SXL-RRM2 with CF I<sub>m</sub>68RRM showed RMS deviations at Cα positions of 1.01 Å with


52 residues and 1.30 Å with 57 residues, respectively, (Figure 2C). Tyr84 and Phe126 in RNP2 and RNP1 motifs of CFI<sub>m</sub>68RRM are equivalent to Tyr43 and Phe83 in CBP20, respectively, and Tyr84 inCF I<sub>m</sub>68RRM is equivalent to Tyr214 in SXL-RRM2.

## Interface between CF I, 25 and CF I, 68RRM

Complex assembly between the CF  $I_m25$  dimer and one molecule of CF  $I_m68RRM$  buries a surface area of 1 200 Ų (AREAIMOL [22]). The  $L_1$  and  $L_3$  loops of CF  $I_m68RRM$  interact with the  $L_{10}$  loop of CF  $I_m25$  (Figure 3). This binding interface is strengthened by three hydrogen bonds and by more than 10 hydrophobic contacts. Tyr158, Tyr160 and His164 of CF  $I_m25$  form three hydrogen bonds with Arg118, Asn120 and Glu116 of CF  $I_m68RRM$ , respectively. Tyr158 of CF  $I_m25$  forms hydrophobic contacts with the backbone of Ala119, Asn120 and Gly121 of CF  $I_m68RRM$ , and Ala163 of CF  $I_m25$  interacts hydrophobically with the backbone of Trp90 and Trp91 of CF  $I_m68RRM$ . His164 of CF  $I_m25$  forms hydrophobic interactions with the backbone of Ser123 of CF  $I_m68RRM$ . Compared with the previously published



**Figure 2** Structure of CF  $I_m68RRM$ . **(A)** Structure-based alignment of RRM domains. RNP1 and RNP2 are highlighted in cyan and yellow. CF  $I_m68RRM$  adopts the canonical  $\alpha\beta$  sandwich structure with a  $\beta_1\alpha_1\beta_2\beta_3\alpha_2\beta_4$  topology. **(B)** Structure of CF  $I_m68RRM$ . Four  $\beta$ -strands constitute an anti-parallel  $\beta$ -sheet arranged in the order of  $\beta_4\beta_1\beta_3\beta_2$ , from left to right when facing the sheet, and two  $\alpha$  helices pack against the  $\beta$ -sheet. The mutated residues in Figure 6C are indicated by ball-and-stick representation and highlighted. **(C)** Superimpositions of CF  $I_m68RRM$  with CBP20 and SXL-RRM2 (Pymol). CF  $I_m68RRM$ , CBP20 and SXL-RRM2 are colored in green, yellow and magenta, respectively. Tyr84 and Phe126 of CF  $I_m68RRM$ , Tyr43 and Phe83 of CBP20 and Tyr214 of SXL-RRM2 are indicated by ball-and-stick representation and are highlighted.



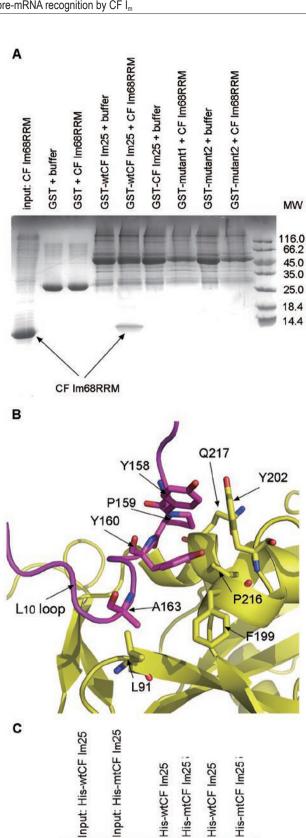
**Figure 3** The interfaces between the CF  $I_m25$  dimer and CF  $I_m68RRM$ . The  $L_{10}$  loop of CF  $I_m25$  (yellow) interacts with  $L_1$  and  $L_3$  loops of CF  $I_m68RRM$  (green). The  $L_5$  loop and  $\alpha_4$  helix of the other CF  $I_m25$  molecule (magenta) of the dimer interacts with the  $L_1$  loop of CF  $I_m68RRM$ . The residues involved in these contacts are indicated by ball-and-stick representation and are highlighted.

structure of apo-CF  $I_m25$  [16], the side chain of His164 is rotated by 120° and reaches into a hydrophobic pocket, which is negatively charged at the top but is hydrophobic at the bottom, interacting with many residues of CF  $I_m68RRM$  (Supplementary information, Figure S3). These interactions fix the  $I_3$  loop of CF  $I_m68RRM$  in an extended conformation. CF  $I_m68RRM$  also interacts with the second CF  $I_m25$  molecule of the homodimer via hydrophobic contacts (Figure 3). The  $I_1$  loop of CF  $I_m68RRM$  interacts with the  $I_5$  loop and  $I_4$  helix of CF  $I_m25$ . His89 of CF  $I_m25$  interacts with Trp91 of CF  $I_m68RRM$ , and Phe199 of CF  $I_m25$  interacts with Trp90, Asn120 and Gln122 of CF  $I_m68RRM$ .

Mutational analysis supports structural model for RRM domain binding

To validate the two interfaces observed in the structure, two mutants of GST-tagged CF  $I_m25$  were generated (GST-mutant1 and GST-mutant2). In GST-mutant1, Tyr158, Tyr160 and His164 were substituted and in GST-mutant2, His89 and Phe199 were substituted. Pull-down

assays showed that CF  $I_m68RRM$  efficiently bound to GST-tagged wild-type CF  $I_m25$  (GST-wtCF  $I_m25$ ), whereas CF  $I_m68RRM$  did not bind to either the GST-mutant1 or the GST-mutant2 (Figure 4A). These results suggest that CF  $I_m68RRM$  interacts with both CF  $I_m25$  molecules of the dimer, indicating the importance of CF  $I_m25$  dimerization for CF  $I_m68RRM$  binding.


Although the L<sub>10</sub> loop of CF I<sub>m</sub>25 (residues 151-168) is a tortuous loop, it is well ordered in the apo-CF I<sub>m</sub>25 structure. Superimposition of the CF I<sub>m</sub>68RRM-bound CF I<sub>m</sub>25 structure with the apo structure showed that the L<sub>10</sub> loops of CF I<sub>m</sub>25 adopt almost the same conformation. The conformation of the L<sub>10</sub> loop of CF I<sub>m</sub>25 could be important for CF Im68RRM binding. Detailed structural analyses revealed that Leu91, Phe199, Tyr202, Pro216 and Gln217 of one CF I<sub>m</sub>25 molecule of the dimer hydrophobically interacts with Tyr158, Ala163, Pro159 and Tyr160 of the L<sub>10</sub> loop of the other CF I<sub>m</sub>25 molecule and that these interactions may stabilize the  $L_{10}$ loop (Figure 4B). Mutagenesis and immunoblot analyses were performed to investigate this hypothesis. A mutant of CF I<sub>m</sub>25 (mtCF I<sub>m</sub>25) was generated, in which Leu91, Tyr202, Pro216 and Gln217 were replaced by alanines to eliminate the proposed stabilization of the  $L_{10}$  loop. Size-exclusion chromatography showed that mtCF I<sub>m</sub>25 eluted similarly to the wild-type CF I<sub>m</sub>25 (wtCF I<sub>m</sub>25), indicating that these mutations do not affect dimerization (Supplementary information, Figure S2D). Immunoblot analysis showed that wtCF I<sub>m</sub>25 bound efficiently to GST-CF I<sub>m</sub>68RRM, whereas mtCF I<sub>m</sub>25 did not (Figure 4C). Thus, substitution of four of the five residues (Leu91, Tyr202, Pro216 and Gln217) markedly impairs CF I<sub>m</sub>-68RRM binding, suggesting that conformation of the  $L_{10}$ loop of CF I<sub>m</sub>25 is possibly important for CF I<sub>m</sub>68RRM binding.

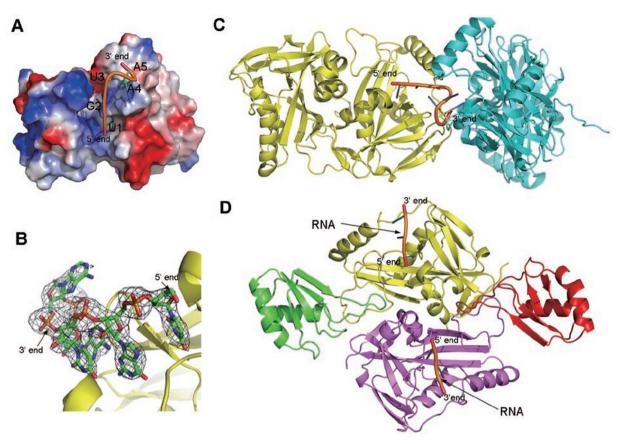
Structure of the CF I<sub>m</sub>25-CF I<sub>m</sub>68RRM-UGUAA complex

We determined the crystal structure of the CF I<sub>m</sub>25-CF I<sub>m</sub>68RRM-UGUAA complex (Table 1). The UGUAA element binds to CF I<sub>m</sub>25 in a positively charged cavity formed by the NUDIX domain (Figure 5A). As the electron density map for the chain S of the UGUAA sequences is the best (Figure 5B), the chain S is taken to describe the interactions between CF I<sub>m</sub>25 and the UGUAA element. The RNA strand twists by about 90° after U3, flipping A4 out of the binding cavity, and twists back right after A4 (Figure 5A). The main chains of Tyr208 and Gly209 make hydrophobic contacts with the uracil base of U1, whereas Phe103 stabilizes the guanine base of G2 through a base-stacking interaction (Supplementary information, Figure S4A). The N3 and O2 of U1 form hydrogen bonds with the main chain carbonyl and amino

GST-CFIm68RRM

GST




IB: His

IB: GST

groups of Phe104, respectively, (Supplementary information, Figure S4A). The O4 and N3 of U3 form hydrogen bonds with the N2 group of the side chain of Arg63 and main chain carbonyl of Ser58, respectively (Supplementary information, Figure S4A). A5 interacts with Leu99 and Glv100 via hydrophobic contacts (Supplementary information, Figure S4B). The N6 and N1 of A5 form hydrogen bonds with the N3 group of G2 and O4\* group of the sugar ring of U3, respectively, (Supplementary information, Figure S4B). A4 does not interact with CF  $I_m 25$ .

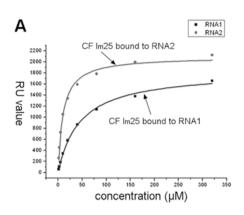
Yang et al. [17] reported the structure of the CF I<sub>m</sub>25-UGUAAA complex, which showed that the RNA hexamer was bound by one molecule of the CF I<sub>m</sub>25 dimer and partially by an adjacent molecule in the crystal (Figure 5C). In addition, the authors found that the CF I<sub>m</sub>25 dimer can bind two UGUA elements in solution. Consistent with this observation, our structure shows that two UGUAA elements bind simultaneously, in an antiparallel orientation, to one CF I<sub>m</sub>25 dimer (Figure 5D). Superimposition of these two structures showed RMS deviations of Ca positions of 0.344 Å with 175 residues (Supplementary information, Figure S4C). The first three nucleotides (U1, G2 and U3) of UGUAA and UGUAAA adopt the same conformation and are recognized by CF I<sub>m</sub>25 in a similar, but not identical manner. Arg63, Phe103, Phe104, Y208 and G209 interact with the first three nucleotides of both UGUAA and UGUAAA. In the CF I<sub>m</sub>25-CF I<sub>m</sub>68RRM-UGUAA complex, UGUAA interacts with Ser58, whereas in the CF I<sub>m</sub>25-UGUAAA complex, UGUAAA interacts with Glu55, Asp57, Glu81, Thr102 and Leu106. The Glu81-U1 and Thr102-U1 interactions require a glycerol molecule. In our studies, no glycerol was added, and accordingly, no Glu81-U1 or Thr102-U1 interactions were observed. The conformation of the 3'-ends of UGUAA and UGUAAA is different. U3, A4, A5 and A6 of UGUAAA form a larger U shape, and A4 and A5 are located in the RNA-binding

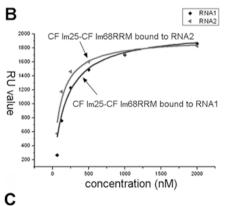
Figure 4 The CF I<sub>m</sub>25 dimerization is important for CF I<sub>m</sub>68RRM binding. (A) Coomassie blue-stained protein SDS gel shows that GST-wtCF Im25 can efficiently bind to CF Im68RRM, but GST-mutant1 and GST-mutant2 does not, suggesting that CF I<sub>m</sub>68RRM interacts with both CF I<sub>m</sub>25 molecules of the dimer. (B) The other CF I<sub>m</sub>25 molecule of the dimer hydrophobically interacts with the  $L_{10}$  loop. The  $L_{10}$  loop is shown in magenta and the other CF I<sub>m</sub>25 molecule is shown in yellow. Residues involved in hydrophobic contacts are indicated by ball-and-stick representation and are highlighted. (C) Immunoblot analysis shows that the wild-type CF Im25 (wtCF Im25) efficiently binds to GST-CF I<sub>m</sub>68RRM, whereas mtCF I<sub>m</sub>25 does not. Neither wtCF I<sub>m</sub>25 nor mtCF I<sub>m</sub>25 binds to the GST tag.



**Figure 5** Structure of the CF  $I_m$ 25-CF  $I_m$ 68RRM-RNA complex. **(A)** The UGUAA element is located in a positively charged cavity of CF  $I_m$ 25, with the exception of A4. Red represents positive charges and blue represents negative charges. **(B)** View of the UGUAA element covered with a  $2F_o - F_c$  electron density map contoured at 0.9  $\sigma$ . The UGUAA element is illustrated as a ball-and-stick scheme. **(C)** Structure of UGUAAA-CF  $I_m$ 25 complexes (PDB entry 3MDI). The RNA hexamer, UGUAAA, is bound by one molecule of CF  $I_m$ 25 dimer (yellow) and partially by an adjacent molecule (cyan) in the crystal. **(D)** View of the CF  $I_m$ 25-CF  $I_m$ 68RRM-UGUAA complex. Two RNA molecules with anti-parallel orientation bind to the same sites of the CF  $I_m$ 25-CF  $I_m$ 68RRM heterotetramer.

pocket of the adjacent dimer. In the CF  $I_m25$ -UGUAAA complex, Glu55 and Thr102 interact with A4, whereas in the CF  $I_m25$ -CF  $I_m68RRM$ -UGUAA complex, A4 does not interact with CF  $I_m25$  and A5 interacts with Leu99 and Gly100.


## CF I<sub>m</sub>25 and CF I<sub>m</sub>68RRM cooperate to bind RNA


Human PAPOLA pre-mRNA (encoding poly(A) polymerase  $\alpha$ , PAP $\alpha$ ) has a canonical poly(A) site and multiple copies of the UGUAA element upstream of the AAUAAA element. CF  $I_m$  binds to the UGUAA elements of PAPOLA pre-mRNA and promotes 3'-end processing [7]. To validate whether CF  $I_m$  assembly contributes to RNA binding, two RNA segments derived from human PAPOLA pre-mRNA, comprising the UGUAA element at the 3'-end were synthesized and used in surface plasmon resonance (SPR) assays. The two RNA segments are 5'-GCUAUUUUGUAAACA-3'

(RNA1) and 5'-CUAUUUUGUAA-3' (RNA2). CF  $I_m25$  bound to RNA1 and RNA2 with  $K_ds$  of 46 and 10  $\mu$ M, respectively, whereas the CF  $I_m25$ -CF  $I_m68RRM$  complex bound with  $K_ds$  of 170 and 100 nM, respectively, (Figure 6A and 6B). Consistent with previous studies [15], CF  $I_m68RRM$  alone showed almost no binding to RNA (Supplementary information, Figure S5A). These results reveal that the CF  $I_m25$ -CF  $I_m68RRM$  complex assembly significantly enhances RNA-binding affinity.

Superimposition of the CF  $I_m25$  dimer with the CF  $I_m25$ -CF  $I_m68RRM$  complex shows that CF  $I_m68RRM$  binding does not change the overall conformation of the CF  $I_m25$  dimer, and Dettwiler *et al.* [15] have shown that CF  $I_m25$  binding enables CF  $I_m68RRM$  to bind RNA. Thus, CF  $I_m68RRM$  may directly interact with RNA to enhance RNA-binding affinity. The anti-parallel  $\beta$ -sheet of the RRM domain is the major RNA-binding surface, and the highly conserved aromatic and positively charged

1046





| Site directed mutagenesis of CF $I_m$ 68RRM solvent exposed residues (in complex with CF $I_m$ 25) |          |  |  |  |  |
|----------------------------------------------------------------------------------------------------|----------|--|--|--|--|
|                                                                                                    |          |  |  |  |  |
| Wt                                                                                                 | 173 ± 40 |  |  |  |  |
| Y84A                                                                                               | 136 ± 29 |  |  |  |  |
| N87A                                                                                               | 141 ± 25 |  |  |  |  |
| F115A                                                                                              | 158 ±25  |  |  |  |  |
| N117A                                                                                              | 279 ± 16 |  |  |  |  |
| N120A                                                                                              | 315 ± 59 |  |  |  |  |
| K124A                                                                                              | 341 ± 57 |  |  |  |  |

**Figure 6** RNA binding analysis. Dissociation constants ( $K_o$ s) were derived using the 1:1 binding model. **(A)** CF  $I_m$ 25 bound to RNA1 and RNA2 with  $K_o$ s of 46 and 10  $\mu$ M, respectively. **(B)** The CF  $I_m$ 25-CF  $I_m$ 68RRM complex bound to RNA1 and RNA2 with  $K_o$ s of 170 and 100 nM, respectively. **(C)** Summary of the binding properties of site-directed mutants of CF  $I_m$ 68RRM. Mutants of CF  $I_m$ 68RRM were co-purified with CF  $I_m$ 25.

residues from RNP1 and RNP2 motifs are generally involved in interactions with consecutive RNA bases. The  $\beta$ -sheet of CF  $I_m68RRM$  is exposed to solvent, suggesting that CF  $I_m68RRM$  may bind the RNA substrate via this region. To validate this hypothesis, mutagenesis analysis was performed. Point mutations of selected residues of CF  $I_m68RRM$  were generated and these mutants were co-purified with CF  $I_m25$  for RNA-binding tests. As shown in Figure 6C, the mutants, N117A, N120A and K124A, showed reduced RNA-binding affinities, whereas the mutants, Y84A, N87A and F115A, showed similar

RNA-binding affinities compared with the wild-type protein. We also generated a mutant in which the aromatic residue in the RNP1 motif, F126, was replaced by an alanine, but this mutant could not be obtained as a stable protein for kinetic analysis. Y84 and F115 are located in the  $\beta$ -sheet, indicating that, unusually for an RRM domain, the  $\beta$ -sheet of CF  $I_m68RRM$  is not involved in RNA recognition. N117, N120 and K124 are located in the  $I_m120$  loop of CF  $I_m68RRM$ , suggesting that the  $I_m120$  loop of CF  $I_m68RRM$  not only interacts with CF  $I_m25$  but may also interact with RNA.

#### Discussion

Comparison with other RRM-protein structures

Biochemical and structural studies have revealed that RRM domains are involved in protein-protein interactions as well as in RNA recognition [23, 24]. Previous studies have shown that CF I<sub>m</sub>68 interacts with CF I<sub>m</sub>25 via the RRM domain and that the substitution of two residues within the RNP2 motif (G86V, N87V) abolished interaction with CF I<sub>m</sub>25 [15]. We initially speculated that CF I<sub>m</sub>68RRM might interact with CF I<sub>m</sub>25 via its β-sheet. Interestingly, the structure of the CF I<sub>m</sub>25-CF I<sub>m</sub>68RRM complex shows that CF I<sub>m</sub>68RRM interacts with CF I<sub>m</sub>25 via its L<sub>1</sub> and L<sub>3</sub> loops, leaving the β-sheet exposed to solvent. To date, about 10 structures of RRM domain-protein/polypeptide complexes have been determined. The recognition mechanisms of proteins by RRM domains are very diverse, and no general mechanism has emerged. The RRM domain interacts with other proteins through its  $\beta$ -sheet [25-28], or  $\alpha$ -helices [29, 30], or  $\alpha$ -helices and L<sub>4</sub> loops [18, 19, 31]. To date, only one RRM-protein complex structure has been reported in which the L<sub>3</sub> loop is involved in interactions with other protein (the Mago-Y14-PYM complex [26]). Comparison of the CF I<sub>m</sub>25-CF I<sub>m</sub>68RRM complex with the Mago-Y14-PYM complex shows that CF I<sub>m</sub>68RRM binds to CF I<sub>m</sub>25 in a different manner. In the Mago-Y14-PYM complex, Y14 interacts with PYM through part of its L<sub>3</sub> loop and interacts with Mago through the entire β-sheet. In the CF I<sub>m</sub>25-CF I<sub>m</sub>68RRM complex, the β-sheet is not involved in protein recognition and the entire L<sub>3</sub> loop is involved in RRM-protein interaction. The novel structural information presented here demonstrates the diversity of protein recognition mechanisms, which underlie RRM domain binding.

CF  $I_m 25$  dimerization is crucial for UGUAA recognition and complex assembly

Recently, CF  $I_m$  has been shown to be a heterotetramer in solution [17]. Our structure confirms that CF  $I_m25$ 



and CF I...68RRM forms a heterotetramer, induced by CF I<sub>m</sub>25 dimerization. Whether this dimerization of CF I<sub>m</sub>25 is important for the activity of CF I<sub>m</sub> is of interest, and our studies indicate that this dimerization of CF I<sub>m</sub>25 is important for complex assembly. The structural and mutational data presented here show that CF I<sub>m</sub>68RRM interacts with both molecules of the CF I<sub>m</sub>25 dimer and that CF I<sub>m</sub>25 dimerization may stabilize the conformation of the L<sub>10</sub> loop of CF I<sub>m</sub>25, which is important for CF I<sub>m</sub>68RRM binding. CF I<sub>m</sub>25 dimerization also enables the simultaneous binding of two UGUAA elements to the CF I<sub>m</sub>25 dimer. Yang et al. [17] observed that the CF I<sub>m</sub>25 dimer bound RNA containing two separated UGUAA elements with 100-fold higher affinity than RNA containing only one UGUAA element. The minimum distance between the two UGUA elements, which is required to observe this gain in affinity is five nucleotides. Unlike the structures of the UGUAAA- and UUGUAU-CF I<sub>m</sub>25 complexes, which show CF I<sub>m</sub>25 dimer binding with only one RNA molecule in the crystals [17], our structure shows that two UGUAA RNA sequences, with antiparallel orientation, bind to one CF I<sub>m</sub>25-CF I<sub>m</sub>68RRM heterotetramer, providing structural evidence to support the simultaneous binding of two UGUAA elements to the CF I<sub>m</sub>25 dimer. The anti-parallel positioning of the two UGUAA elements and the discontiguous RNA-binding surfaces confirm the importance of the separation by a certain number of bases of the two UGUAA elements.

CF  $I_m25$  enables CF  $I_m68$  to bind RNA through stabilization of the  $L_3$  loop of CF  $I_m68$ 

UV-crosslinking experiments showed that CF I<sub>m</sub>68 binds to pre-mRNA substrate very weakly, but can efficiently bind to RNA upon complex formation with CF I<sub>m</sub>25 [15]. Our studies therefore suggest that CF I<sub>m</sub>25 may enable CF I<sub>m</sub>68 to bind RNA. Although the β-sheet of CF I<sub>m</sub>68RRM contains the conserved RNP1 and RNP2 motifs found in other RRM domains (Figure 2A) and is accessible for RNA, our studies show that it is not involved in RNA binding. Y84, N87 and F115 are located in the  $\beta_1$  strand,  $L_1$  loop and  $\beta_2$  strand, respectively. The Y84A, N87A and F115A mutants showed similar RNAbinding affinities to the wildtype, suggesting that the β-sheet does not interact with RNA. This observation is supported by the recently determined structure of the CF I<sub>m</sub>25-CF I<sub>m</sub>59RRM complex (PDB entry 3N9U). The structure of the CF I<sub>m</sub>25-CF I<sub>m</sub>59RRM complex shows that the β-sheet is buried by a helix formed by the Cterminal extension of the RRM domain (Supplementary information, Figure S6). As CF I<sub>m</sub>59 and CF I<sub>m</sub>68 have highly homologous amino acid sequences, the β-sheet of CF I<sub>m</sub>68RRM is possibly also buried by a helix and is

inaccessible to RNA. Substitutions of N117, N120 and K124, which are located in the  $L_3$  loop, reduce RNA-binding affinities, suggesting the  $L_3$  loop of CF  $I_m$ 68RRM may bind to RNA. This observation is particularly interesting. In SXL-RRM2 [20] and PABP RRM1 [32], the  $L_3$  loops interact with RNA but not with protein, whereas in the Mago-Y14-PYM complex, the  $L_3$  loop interacts only with protein. To our knowledge, the RRM domain of CF  $I_m$ 68 is the first example of an RRM domain that binds to both protein and RNA via the  $L_3$  loop. Without CF  $I_m$ 25 binding, the  $L_3$  loop of CF  $I_m$ 68RRM is thought to be more flexible, which may affect RNA binding. Upon complex formation with CF  $I_m$ 25, the  $I_3$  loop of CF  $I_m$ 68RRM is extended and accessible for RNA binding. CF  $I_m$ 25 may enable CF  $I_m$ 68 to bind RNA in this manner.

CF I, 68 makes an essential contribution to RNA binding The CF I<sub>m</sub>25-CF I<sub>m</sub>68RRM complex binds to RNA1 and RNA2 much more efficiently than CF I<sub>m</sub>25 alone (270-fold for RNA1 and 100-fold for RNA2), indicating that the large subunit, CF I<sub>m</sub>68, makes an essential contribution to pre-mRNA recognition. Point mutation and kinetics analyses show that the L<sub>3</sub> loop of CF I<sub>m</sub>68RRM may be involved in RNA binding. As the UGUAA element orientates opposite to CF I<sub>m</sub>68RRM from the 5' to 3'-end, the L<sub>3</sub> loop of CF I<sub>m</sub>68RRM may bind the immediately flanking upstream region of the UGUAA element. Complex assembly places the L<sub>3</sub> loop of CF I<sub>m</sub>68RRM and the NUDIX domain of CF I<sub>m</sub>25 together, forming a large and continuous RNA-binding platform (Supplementary information, Figure S7A). We observed that CF I<sub>m</sub>25 binds to RNA1 much more weakly than RNA2 (about fivefold). The program UNAFold [33] indicated that RNA1 folds into a hairpin structure (Supplementary information, Figure S7B). The U-A and G-C intramolecular interactions bury the UGUAA element, impairing the binding of CF I<sub>m</sub>25. Pre-mRNA processing, such as splicing, is influenced by the secondary structure of the pre-mRNA [34]. Most proteins involved in splicing regulation recognize single-stranded, rather than base-paired RNA. The hairpin structure of RNA reduces the binding of CF I<sub>m</sub>25 by about fivefold but has a much smaller impact on the CF I<sub>m</sub>25-CF I<sub>m</sub>68RRM complex (less than twofold), suggesting that CF I<sub>m</sub>68 binding helps CF I<sub>m</sub>25 to recognize the UGUAA element, besides promoting a higher binding affinity.

During 3'-end processing, CF I<sub>m</sub> binds to pre-mRNA concomitantly with CPSF to stabilize the binding of CPSF to the AAUAAA hexamer at an early stage of processing complex assembly [5, 6]. It binds to the UGUAN element upstream of the poly(A) site in a sequence-dependent manner [4, 35]. The CF I<sub>m</sub>25 dimer simultane-

ously binds to two UGUA elements within one molecule of pre-mRNA (termed as two UGUAA elements binding mode) [17]. In addition, CF I<sub>m</sub>25 and CF I<sub>m</sub>68 cooperates to bind the UGUAA element and the immediately upstream flanking region, respectively, for higher affinity (termed as synergistic binding mode). Bioinformatic analyses revealed that the two modes are both functionally important for pre-mRNA recognition by CF I<sub>m</sub> (Table 2). Approximately 43.6% of human mRNAs (a total number of 44 563) contain A(A/U)UAAA elements immediately upstream of the poly(A) site and UGUAN elements upstream of A(A/U)UAAA and 29.3% contain multiple copies of UGUAN elements. We also analyzed the mRNAs from Mus musculus, Danio rerio, Gallus gallus and Xenopus laevis and found that the proportions are 42.8% and 28%, 38.6% and 28.9%, 27.8% and 19.7%, and 65.9% and 50.7%, respectively (Table 2). These results show that CF I<sub>m</sub> binds to about half of all pre-mRNAs, of which the majority contain at least two copies of UGUAN elements and the minority contain only one copy of the UGUAN element. CF I<sub>m</sub> may bind to pre-mRNAs containing at least two copies of UGUAN elements via both the two UGUA element-binding and the synergistic-binding modes. For the pre-mRNAs containing only one copy of the UGUAN element, which is the case for about 10% of all mRNAs, CF I<sub>m</sub> binds the pre-mRNA via the synergistic binding mode to ensure efficient binding.

#### **Materials and Methods**

#### Protein expression and purification

The cDNAs of CF I<sub>m</sub>25 (residues 34-227) and CF I<sub>m</sub>68RRM (residues 78-159) were cloned into the vector pET22b. Cys159 of CF I<sub>m</sub>68RRM was replaced by an alanine to prevent disulfide bond formation. GST or GST proteins were cloned into the pGEX-4T-2 vector. His-MBP-tag proteins were cloned into the modified pET32a vector, the products of which contain His-MBP-tags in the N-terminal of the recombinant proteins. Proteins were expressed

in *Escherichia coli* Rosetta (DE3) (Novagen). Mutations were introduced using PCR by designing mutated residues in primers with the MutanBEST kit (TAKARA). All plasmids were confirmed by DNA sequencing. CF  $I_{\rm m}25$  and CF  $I_{\rm m}68RRM$  were co-purified by Ni²+ ion-affinity chromatography, and further purified by Superdex-200 gel filtration and monoQ ion exchange chromatography (GE Healthcare). Finally, the CF  $I_{\rm m}68$ -CF  $I_{\rm m}68RRM$  complex was concentrated by centrifugal ultrafiltration (Millipore, 5 kDa cutoff) to approximately 8 mg/ml, as estimated using the BCA Protein Assay Kit (Pierce), in 2 mM Tris (pH 8.0), and 100 mM NaCl for crystallization assays.

#### Crystallization and data collection

The CF I<sub>m</sub>25-CF I<sub>m</sub>68RRM complex was crystallized at the concentration of approximately 8 mg/ml by hanging-drop vapor diffusion at 10 °C with the reservoir solution containing 16% PEG3350, 5% dioxane and 0.1 M sodium citrate, pH 5.0. The 2.7 Å diffraction data was collected at beamline 3W1A of Beijing Synchrotron Radiation Facility (BSRF). The CF I<sub>m</sub>25-CF I<sub>m</sub>68RRM complex was incubated with twofold excess of UGUAA (TAKARA) on ice for 0.5 h, with a final concentration of approximately 6 mg/ml. The CF I<sub>m</sub>25-CF I<sub>m</sub>68RRM-UGUAA complex was crystallized by sitting-drop vapor diffusion at 10 °C with the reservoir solution containing 15% PEG3350, 9% dioxane and 0.1 M sodium citrate, pH 5.0. The 2.9 Å diffraction data was collected at beamline BL17U of Shanghai Synchrotron Radiation Facility (SSRF). The data were processed and scaled with the HKL2000 package [36].

#### Structure determination

The CF  $I_m$ 25-CF  $I_m$ 68RRM crystals belong to space group C2 with the cell parameters: a = 159.77 Å, b = 105.51 Å, c = 146.53 Å, and  $\alpha = \gamma = 90.00^{\circ}$ ,  $\beta = 112.58^{\circ}$ . Each asymmetric unit contains three copies of a 2:2 CF  $I_m$ 25-CF  $I_m$ 68RRM complex. The phase was determined by molecular replacement using Molrep [37] and Phaser [38]. First, six CF  $I_m$ 25 subunits were found using the structure of apo CF  $I_m$ 25 (PDB entry 2cl3) as the search model and then fixed. Then six CF  $I_m$ 68RRM subunits were found using the structure of RBMY protein RRM domain (PDB entry 2FY1) as the search model. The model completeness was carried out in COOT [39] and the refinement was performed by REFMAC5 [40] with non-crystallographic symmetry (NCS) restraints and CNS [41]. The NCS restraints were tight in earlier stages and completely re-

Table 2 Bioinformatics analyses of the UGUAN elements of mRNAs from multiple vertebrate organisms

| Organisms                                 | Homo sapiens   | Mus musculus   | Danio rerio   | Gallus gallus | Xenopus laevis |
|-------------------------------------------|----------------|----------------|---------------|---------------|----------------|
| Total number of mRNAs <sup>a</sup>        | 44563 (100.0%) | 41910 (100.0%) | 28699 (100%)  | 19131 (100%)  | 8549 (100%)    |
| (relative percentage) <sup>b</sup>        |                |                |               |               |                |
| Number of mRNAs containing                | 19413 (43.6%)  | 17905 (42.8%)  | 11087 (38.6%) | 5319 (27.8%)  | 5638 (65.9%)   |
| UGUAN upstream of A(A/U)UAAA <sup>c</sup> |                |                |               |               |                |
| Number of mRNAs containing multiple       | 13069 (29.3%)  | 11732 (28.0%)  | 8280 (28.9%)  | 3768 (19.7%)  | 4336 (50.7%)   |
| copies of UGUAN                           |                |                |               |               |                |

<sup>&</sup>lt;sup>a</sup>All the mRNA sequences were derived from the Refseq database of NCBI. Refseq database provides a multiple organism, non-redundant database of mRNA sequences.

<sup>&</sup>lt;sup>b</sup>The total number of mRNA of each organism was set to 100%, respectively.



laxed in later stages. Water molecules were added to the model by inspection of  $2F_0 - F_c$  and  $F_0 - F_c$  density maps in the final stages. The final refined model has an R factor ( $R_{\text{free}}$ ) of 21.4% (26.5%). The quality of model was checked using the program Molprobity [42]. The Ramachandran plot reveals that 95.5% of the residues are in the most favored region, with an additional 4.4% in the additionally allowed region. One residue is in the outlier region, which is Pro113. The CF I<sub>m</sub>25-CF I<sub>m</sub>68RRM-RNA crystals belong to space group P21 with the cell parameters: a = 104.78 Å,  $b = 129.42 \text{ Å}, c = 111.16 \text{ Å}, \text{ and } \alpha = \gamma = 90.00^{\circ}, \beta = 94.01^{\circ}$ . Each asymmetric unit contains four copies of CF I, 25-CF I, 68RRM heterotetramer. The phase was determined by molecular replacement with Phaser [38]. Seven RNA molecules can be traced in the electron density map within the cavities of the CF I<sub>m</sub>25 subunits, whereas no electron density for RNA was observed within the same region of the remaining CF I<sub>m</sub>25 subunit. Thus, seven RNA chains (termed chain Q, R, S T, U, V and W, respectively) were manually added with the guidance of  $2F_o - F_c$  and  $F_o - F_c$  density maps in Coot [39]. Chain Q contains U1 and the guanine base of G2, chain R contains all the five nucleotides with the exception of the adenine base of A4 and the phosphate group of A5, chain S contains all the five nucleotides, chain T contains the first three nucleotides and A5 with the exception of the phosphate group of A5, chain U contains the first three nucleotides and the adenine base of A5, chain V contains the first three nucleotides and chain W contains U1. The refinement was performed by REFMAC5 [40]. Finally, water molecules were added to the model by inspection of  $2F_0 - F_c$  and  $F_0 - F_c$  density maps. The translation-libration-screw (TLS) model was applied near the end of refinement. The final refined model has an R factor ( $R_{\text{free}}$ ) of 22.6% (27.6%) and was validated using Molprobity [42]. The Ramachandran plot revealed that 97.3% of the residues are in the most favored region, with an additional 2.7% in the additionally allowed region. Structural figures were prepared with Pymol (http://www.pymol.org).

## Glutathione S-transferase pull-down assays

Small-scale pull-down assays were performed. GST-proteins or GST tag (150 μg) from the soluble fraction of *E. coli* cell lysate was incubated with 75 μl of glutathione agarose beads (GE Healthcare) for 30 min at room temperature. After washing three times with binding buffer, beads were incubated with 150 μg of purified recombinant proteins for 1 h at 16 °C. After incubation, the beads were washed three times with binding buffer to remove unbound proteins. Bound proteins were eluted from the beads by boiling in SDS sample buffer and resolved on SDS-PAGE.

## Immunoblot analysis

An aliquot containing 50  $\mu$ g of protein from the soluble fraction of *E. coli* cell lysate expressing GST or GST-proteins was incubated with 20  $\mu$ l of glutathione agarose beads (GE Healthcare) for 20 min at room temperature. After washing four times with 1× PBS, beads bound with GST or GST-proteins were incubated with 50  $\mu$ g of the recombinant His-MBP-tagged or His-tagged proteins in 0.25 ml HNTG-buffer (20 mM Hepes-KOH, pH 7.5, 100 mM NaCl, 0.1% Triton X-100, and 10% glycerol) for 1 h at 4 °C. After incubation, the beads were washed six times with 1 ml HNTG buffer to remove unbound proteins. Bound proteins were eluted from the beads by boiling in SDS sample buffer and detected by immunoblot analysis.

#### Size-exclusion chromatography assay

The size-exclusion chromatography assays were performed with a Superdex 200 column (10/300 GL) (GE Healthcare). The protein sample or molecular mass standards were applied to the Superdex 200 column (10/300 GL) and eluted with 50 mM Tris, pH 8.0 and 200 mM NaCl. Standard proteins (GE Healthcare) were thyroglobulin (669.0 kDa), ferritin (440.0 kDa), albumin (69.0 kDa), ovalbumin (43.0 kDa), ribonuclease A (13.7 kDa). The void volume was determined with blue dextran (GE Healthcare).

#### Surface plasmon resonance measurement

All SPR studies were performed with a Biacore 3000 instrument (Biacore AB, Uppsala, Sweden). The RNA segment with the same sequence found upstream of the human *PAPOLA* pre-mRNA poly(A) site (5'-GCUAUUUUGUAAACA-3' (-63 to -49) or 5'-CUAUUUUGUAA-3' (-62 to -42)) was immobilized on a SA chip via a biotin at the 3'-end, and solutions containing wild-type proteins and mutants at different concentrations were passed over the chip at 10 µl/min and washed by 50 mM NaOH. All experiments were carried out at 25 °C in binding buffer (20 mM Tris, pH 8.0, 150 mM NaCl). The binding curves were fitted according to a one-site binding model using Origin software (http://www.originlab.com). The raw sensorgrams data obtained with different concentrations of proteins are provided as Supplementary information, Figure S5.

#### Accession codes

The coordinates and structure factors have been deposited with accession number 3P5T (for the CF  $I_m25$ complex-CF  $I_m68$ RRM complex) and 3P6Y (for the CF  $I_m25$ -CF  $I_m68$ RRM-UGUAA complex).

## Acknowledgments

We thank the staff at BSRF beamline 3W1A and SSRF beamline BL17U for assistance with synchrotron data collection and Dr S Barabino (University of Milano-Bicocca) for plasmids, and Dr C Zhao and Dr J Zang (University of Science and Technology of China) for their valuable advice on experiments and manuscript. Financial support for this project was provided by research grants from the National Natural Science Foundation of China (30025012, 30900224 and 10979039), the Chinese Ministry of Science and Technology (2006CB806500, 2006CB910200 and 2006AA02A318), the Chinese Academy of Sciences (KSCX2-YW-R-60), the Chinese Ministry of Education (20070358025) and the Natural Science Foundation of Anhui Province (090413081). Heng Li was supported by the Graduate Innovation Foundation of USTC (KD2007034).

## References

- Zhao J, Hyman L, Moore C. Formation of mRNA 3' ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. *Microbiol Mol Biol Rev* 1999; 63:405-445.
- 2 Takagaki Y, Manley JL. Complex protein interactions within the human polyadenylation machinery identify a novel component. *Mol Cell Biol* 2000; 20:1515-1525.
- 3 Gilmartin GM, Nevins JR. An ordered pathway of assembly

- of components required for polyadenylation site recognition and processing. Genes Dev 1989; 3:2180-2190.
- Brown KM, Gilmartin GM. A mechanism for the regulation of pre-mRNA 3' processing by human cleavage factor Im. Mol Cell 2003; 12:1467-1476.
- Rüegsegger U, Blank D, Keller W. Human pre-mRNA cleavage factor Im is related to spliceosomal SR proteins and can be reconstituted in vitro from recombinant subunits. Mol Cell 1998; 1:243-253.
- Rüegsegger U, Beyer K, Keller W. Purification and characterization of human cleavage factor Im involved in the 3' end processing of messenger RNA precursors. J Biol Chem 1996; **271**:6107-6113.
- Venkataraman K, Brown KM, Gilmartin GM. Analysis of a noncanonical poly(A) site reveals a tripartite mechanism for vertebrate poly(A) site recognition. Genes Dev 2005; 19:1315-1327.
- Bienroth S, Keller W, Wahle E. Assembly of a processive messenger RNA polyadenylation complex. EMBO J 1993; 12:585-594.
- Kubo T, Wada T, Yamaguchi Y, Shimizu A, Handa H. Knockdown of 25 kDa subunit of cleavage factor Im in Hela cells alters alternative polyadenylation within 3'-UTRs. Nucleic Acids Res 2006; 34:6264-6271.
- Bessman MJ, Frick DN, O'Handley SF. The MutT proteins or "Nudix" hydrolases, a family of versatile, widely distributed, "housecleaning" enzymes. J Biol Chem 1996; 271:25059-25062.
- Drevfuss G, Swanson MS, Pinol-Roma S. Heterogeneous nuclear ribonucleoprotein particles and the pathway of mRNA formation. Trends Biochem Sci 1988; 13:86-91.
- Swanson MS, Nakagawa TY, LeVan K, Dreyfuss G. Primary structure of human nuclear ribonucleoprotein particle C proteins: conservation of sequence and domain structures in heterogeneous nuclear RNA, mRNA, and pre-rRNA-binding proteins. Mol Cell Biol 1987; 7:1731-1739.
- Adam SA, Nakagawa T, Swanson MS, Woodruff TK, Dreyfuss G. mRNA polyadenylate-binding protein: gene isolation and sequencing and identification of a ribonucleoprotein consensus sequence. Mol Cell Biol 1986; 6:2932-2943.
- Smith CW, Valcarcel J. Alternative pre-mRNA splicing: the logic of combinatorial control. Trends Biochem Sci 2000; **25**:381-388.
- 15 Dettwiler S, Aringhieri C, Cardinale S, Keller W, Barabino SM. Distinct sequence motifs within the 68-kDa subunit of cleavage factor Im mediate RNA binding, protein-protein interactions, and subcellular localization. J Biol Chem 2004; **279**:35788-35797.
- Coseno M, Martin G, Berger C, et al. Crystal structure of the 25 kDa subunit of human cleavage factor Im. Nucleic Acids Res 2008; 36:3474-3483.
- Yang Q, Gilmartin GM, Doublié S. Structural basis of UGUA recognition by the Nudix protein CFIm25 and implications for a regulatory role in mRNA 3' processing. Proc Natl Acad Sci USA 2010; 107:10062-10067.
- 18 Calero G, Wilson KF, Ly T, et al. Structural basis of m7GpppG binding to the nuclear cap-binding protein complex. Nat Struct Biol 2002; 9:912-917.
- Mazza C, Ohno M, Segref A, Mattaj IW, Cusack S. Crystal

- structure of the human nuclear cap binding complex. Mol Cell 2001: 8:383-396.
- Handa N, Nureki O, Kurimoto K, et al. Structural basis for recognition of the tra mRNA precursor by the sex-lethal protein. Nature 1999; 398:579-585.
- Holm L, Sander C. Mapping the protein universe. Science 1996; 273:595-603.
- 22 CCP4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 1994; 50(Pt 5):760-763.
- 23 Clery A, Blatter M, Allain FH. RNA recognition motifs: boring? Not quite. Curr Opin Struct Biol 2008; 18:290-298.
- Maris C, Dominguez C, Allain FH. The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J 2005; 272:2118-2131.
- Kadlec J, Izaurralde E, Cusack S. The structural basis for the interaction between nonsense-mediated mRNA decay factors UPF2 and UPF3. Nat Struct Mol Biol 2004; 11:330-337.
- Bono F, Ebert J, Unterholzner L, et al. Molecular insights into 26 the interaction of PYM with the Mago-Y14 core of the exon junction complex. EMBO Rep 2004; 5:304-310.
- Lau CK, Diem MD, Dreyfuss G, Van Duyne GD. Structure of the Y14-Magoh core of the exon junction complex. Curr Biol 2003; 13:933-941.
- 28 Fribourg S, Gatfield D, Izaurralde E, Conti E. A novel mode of RBD-protein recognition in the Y14-Mago complex. Nat Struct Biol 2003; 10:433-439.
- Selenko P, Gregorovic G, Sprangers R, et al. Structural basis for the molecular recognition between human splicing factors U2AF65 and SF1/mBBP. Mol Cell 2003; 11:965-976.
- Kielkopf CL, Rodionova NA, Green MR, Burley SK. A novel peptide recognition mode revealed by the X-ray structure of a core U2AF35/U2AF65 heterodimer. Cell 2001; 106:595-605.
- Price SR, Evans PR, Nagai K. Crystal structure of the spliceosomal U2B"-U2A' protein complex bound to a fragment of U2 small nuclear RNA. Nature 1998; 394:645-650.
- 32 Deo RC, Bonanno JB, Sonenberg N, Burley SK. Recognition of polyadenylate RNA by the poly(A)-binding protein. Cell 1999; 98:835-845.
- 33 Markham NR, Zuker M. UNAFold: software for nucleic acid folding and hybriziation. Methods Mol Biol 2008; 453:3-31.
- Hiller M, Zhang Z, Backofen R, Stamm S. Pre-mRNA secondary structures influence exon recognition. PLoS Genet 2007; 3:e204.
- 35 Tian B, Hu J, Zhang H, Lutz CS. A large-scale analysis of mRNA polyadenylation of human and mouse genes. Nucleic Acids Res 2005; 33:201-212.
- Otwinowski Z, Minor W. Processing of x-ray diffraction data collected in oscillation mode. Methods Enzymol 1997; **276**:307-326.
- Vagin A, Teplyakov A. MOLREP: an automated program for molecular replacement. J Appl Cryst 1997; 30:1022-1025.
- McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. Phaser crystallographic software. J Appl Cryst 2007; 40:658-674.
- Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 2004; 60(Pt 12 Pt 1):2126-2132.
- 40 Murshudov GN, Vagin AA, Dodson EJ. Refinement of macromolecular structures by the maximum-likelihood method.

. 1054

- Acta Crystallogr D Biol Crystallogr 1997; 53(Pt 3):240-255.
  Brunger AT, Adams PD, Clore GM, et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 1998;
- **54(Pt 5)**:905-921.
- 42 Davis IW, Leaver-Fay A, Chen VB, *et al.* MolProbity: allatom contacts and structure validation for proteins and nucleic acids. *Nucleic Acids Res* 2007; **35**:W375-W383.

(**Supplementary information** is linked to the online version of the paper on the *Cell Research* website.)