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Epigenetic inheritance: Uncontested?
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“Epigenetics” is currently defined as “the inheritance of variation (-genetics) above and beyond (epi-) changes in 
the DNA sequence”. Despite the fact that histones are believed to carry important epigenetic information, little is 
known about the molecular mechanisms of the inheritance of histone-based epigenetic information, including histone 
modifications and histone variants. Here we review recent progress and discuss potential models for the mitotic in-
heritance of histone modifications-based epigenetic information.
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Introduction

The current definition of “epigenetics” is “the inheri-
tance of variation (-genetics) above and beyond (epi-) 
changes in the DNA sequence” [1]. In eukaryotic cells, 
the basic unit of chromatin is the nucleosome, composed 
of 147 bp of DNA wrapped around the core histone oc-
tamer [2]. Histones contain extensive post-transcriptional 
modifications for various functions (reviewed in this 
issue, [3]). Histone modifications are known to carry 
important epigenetic information [3, 4], especially after 
several histone modifications were shown to be critical to 
many well-known epigenetic phenomena, including po-
sition effect variegation [5-7], Polycomb silencing [8-11] 
and dosage compensation [12, 13]. However, how newly 
deposited histones acquire these modifications during/
after DNA replication remains enigmatic. In fact, it is not 
even clear whether any of these modifications are rees-
tablished on newly deposited histones in a manner pre-
cise enough to assure mitotic inheritance of histone mod-
ification-based epigenetic information. In this review, 
we focus on insights obtained from recent progress that 
lead us to the viewpoint that histone modification-based 
epigenetic information may not necessarily be precisely 
inherited during the mitotic divisions. Instead, histone 

modifications affecting epigenetics may be reestablished 
in a much more flexible way to maintain distinct tran-
scription states.

Semi-conservative partition, followed by templated 
modification copying events: an imperfect “ideal” 
model

In addition to histone modification-based epigenetic 
inheritance, there are two well-studied biological phe-
nomena in which information is transmitted across cell 
division: the inheritance of genetic information through 
the DNA sequence and the inheritance of epigenetic 
information encoded by CpG methylation. Semi-conser-
vative DNA replication and sister chromatid segregation 
ensure the faithful duplication and partition of the genet-
ic information. Similarly, symmetric CpG methylations 
are segregated in a semi-conservative way and faithfully 
reestablished on the newly synthesized DNA strand by a 
templated copying event (Figure 1A) [14-16]. Therefore, 
semi-conservative partitioning of the histone H3-H4 
tetramers followed by templated modification copying 
events provided a compelling model for the inheritance 
of histone modifications during mitotic divisions (Figure 
1B). This model relies on two critical assumptions: (1) 
inheritable histone modifications are obligated to exist 
in a symmetric manner within mono-nucleosomes; (2) 
histone H3-H4 tetramers undergo semi-conservative seg-
regation during DNA replication-dependent chromatin 
assembly.

Every nucleosome contains two copies of each core 
histone. However, it is not known whether histone modi-
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fications exist in a symmetric manner within mono-
nucleosomes, mainly because of technical difficulties in 
discriminating symmetrically and asymmetrically modi-
fied nucleosomes.

Another key pillar for this precise inheritance model 
depicted in Figure 1B is the semi-conservative parti-
tion of the H3-H4 tetramers during DNA replication-
dependent chromatin assembly. Historically, this model 
about “two symmetrically paired half-nucleosomes” was 
proposed in 1976 to explain “potential direct inheritance 
of information in the form of histone structure” [17]. 

However, newly synthesized and parental chromatins 
exhibit comparable micrococal nuclease digestion kinet-
ics, indicating that newly synthesized chromatin contains 
full nucleosomes at regular spacing intervals [18]. Sedi-
mentation studies with heavy isotope-labeled histones 
indicated that histone octamers segregate in a conserved 
manner [19]. These findings led to the nucleosome 
conservative segregation model. Although “hybrid nu-
cleosomes” containing old H3-H4 tetramers and new 
H2A-H2B dimers, or vice versa, were discovered later 
[20-23], H3-H4 tetramers, the core particles of the nu-

Figure 1 Semi-conservative partition, followed by templated modification copying events: an imperfect “ideal” model. (A) 
Model illustration for the inheritance mechanism of DNA methylation. (B) The “ideal” but recently proven incorrect model for 
the inheritance of histone modifications.
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cleosomes, which carry the modifications most likely to 
be involved in epigenetic phenomena, do not dissociate 
during replication-dependent nucleosome assembly [24-
27]. However, expectations for the H3-H4 tetramer split 
model revived in the past few years, after the discoveries 
that H3-H4 histones deposit onto chromatin as dimers 
rather than tetramers [28-30], and that the histone chaper-
one Asf1 blocks H3-H4 tetramer formation [31, 32] and 
even disrupts pre-assembled H3-H4 tetramers to form 
H3-H4/Asf1 heterotrimers [32]. Although without direct 
evidence, these studies certainly offered a possibility for 
the H3-H4 tetramer splitting events. Hence, debates and 
discussions about the H3-H4 tetramer semi-conservative 
partition model arose in many recent reviews [33-39]. 
Recently, with selective purification of “old” or “new” 
H3 histone-containing mono-nucleosomes and stable 
isotope labeling-based quantitative mass spectrometry 
analysis, the H3-H4 tetramer partition pattern was re-
investigated in a high-resolution, variant-specific way 
[40]. This study provided strong evidence that the ma-
jority of H3-H4 tetramers segregate in a conservative 
manner. Although splitting events of a fraction of H3.3-
H4 tetramers were detected [40], it is unlikely that these 
events are responsible for epigenetic inheritance mecha-
nisms involving templated modification copying within 
the same mono-nucleosomes, especially for repressive 
modifications given that H3.3 is associated with actively 
transcribed genomic regions.

These observations failed to support the seemingly 
simple and ideal model for epigenetic inheritance of 
histone modifications (Figure 1B), leading future inves-
tigations into alternative models. These studies also sug-
gest that if there are any templated copying events for 
histone modifications, the most likely templates would 
be neighboring pre-modified parental nucleosomes, and, 
if this were to be the case, then the mitotic inheritance of 
histone modifications may not be achieved by a highly 
precise mechanism (see section Templated modification 
copying events versus modification reinforcement).

Replication-coupled histone modification “copying” 
versus replication-independent histone modifica-
tion “maturation”

Replication-coupled modification “copying” on newly 
deposited histones behind the replication fork?

CpG methylation is faithfully maintained by recruit-
ment of DNMT1 to the replication forks [41] by PCNA 
[42] and UHRF1 [43, 44]. Similarly, many histone modi-
fiers have been reported to localize to the replication 
forks, suggesting potential replication-coupled reestab-
lishment of histone modifications on the nascent chroma-

tin. These include PCNA-mediated replication-coupled 
recruitment of HDACs [45]; CAF-1-mediated MBD1 
and SETDB1 recruitment during heterochromatin DNA 
replication [46-48]; and DNMT1-mediated replication-
coupled recruitment of G9a [49]. Finally, the PRC2 com-
plex has also been reported to localize to the replication 
foci throughout S phase [50].

That certain chromatin-modifying enzymes localize 
to replication foci raises the attractive hypothesis that 
factors such as PCNA and CAF-1 that interact with the 
replication machinery may serve as a landing pad for the 
chromatin-modifying enzymes to facilitate rapid restora-
tion of the histone modifications on nascent chromatin.

Replication-independent modification “maturation” on 
newly deposited histones?

Histone modifications are often designated as being 
“epigenetic modifications”. However, certainly not all 
modifications are “epigenetic”, because many of them 
may not be inheritable as required under a widely ac-
cepted definition of “epigenetics” [1, 4]. In fact, even 
for methylated versions of H3K9 and H3K27 that play 
critical roles in well-studied epigenetic phenomena, in-
cluding position effect variegation, Polycomb silencing 
and X chromosome inactivation in mammals [5-13], it 
is not clear whether these modifications are faithfully 
reestablished on the newly deposited histones. Therefore, 
the development of a new technology to monitor the es-
tablishment of histone modifications on newly deposited 
histones will help resolve two important questions: (1) 
which kinds of histone modifications are faithfully rees-
tablished on newly deposited histones; and (2) what is 
the kinetics for the reestablishment of histone modifica-
tions on newly deposited histones?

Stable isotope labeling-based quantitative mass spec-
trometry analysis allowed simultaneous detection of 
modifications on pre-existing and newly deposited his-
tones, as well as relative quantification of their global 
abundance, thus providing a resolution for the above-
mentioned technical challenges. This approach was 
first utilized for studying the reestablishment of H4K20 
methylation on newly deposited histones, with the re-
sults indicating that H4K20 was progressively methy-
lated throughout the cell cycle [51]. Interestingly, little 
H4K20me2, the main state of mammalian H4K20 meth-
ylation, was detected on newly synthesized H4 histones 
during the S phase, suggesting that H4K20me2 was not 
reestablished on newly deposited histones in a replica-
tion-dependent manner. This was confirmed by an inde-
pendent study [52]. These results are consistent with the 
findings that H4K20me2-3, established by the Suv4-20 
enzymes, requires H4K20me1 [53], which is catalyzed 
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by PR-Set7, whose expression is cell cycle-regulated and 
present from G2 to early G1 [54-58].

A similar strategy was applied to H3K79 methylation, 
with the improvement that both the H3 histone backbone 
as well as the methyl group can be simultaneously moni-
tored [59]. Surprisingly, old H3 histones continue to be 
methylated at K79 at a rate comparable to that of newly 
deposited H3 histones, a clear indication that H3K79 
methylation cannot be reestablished in a replication-
coupled manner. Given that H3K79me2 shares a similar 
half-life with the histone modifications most likely to 
carry epigenetic information (H3K27me3 and H3K9me3) 
[60, 61], it was proposed that there might be a certain 
degree of positional “scrambling” of K79 methylation 
through the cell cycle [59].

Taken together, studies with stable isotope labeling-
based quantitative mass spectrometry analysis provided 
new technology and novel insights for understanding the 
modification-reestablishment process on newly deposited 
histones. Current results indicated that histone lysine 
methylations in general have a much longer half-life 
than acetylation or phosphorylation [51, 60, 61], and that 
certain methylation states might be established on newly 
deposited histones in a chromatin assembly-coupled way. 
But clearly, modification states like H4K20me2 are es-
tablished by a mechanism independent of DNA replica-
tion [51, 52]. These modification states might gradually 
“mature” through the cell cycle.

Templated modification copying events versus modifi-
cation reinforcement

Templated modification copying events?
In order to be heritable, pre-existing modifications 

should, at least to some extent, be able to serve as tem-
plates to guide the reestablishment of the same modifica-
tions on newly deposited histones [62]. Considering that 
the vast majority of histone H3-H4 tetramers segregate 
in a conservative manner [26, 27, 40], the most likely 
templates might be adjacent pre-existing nucleosomes in 
cis (Figure 2).

The proposed modification copying events are highly 
similar to another analogous phenomenon, chromatin 
modification spreading. Certain histone modification 
events, including H4K16 deacetylation, H3K9 methy-
lation and H3K27 methylation, can spread along the 
chromatin to maintain a regional heterochromatic envi-
ronment [63-65]. These events are typically mediated by 
the association of a chromatin-modifying enzyme with 
a partner effector protein that specifically recognizes the 
modified product, such as Sir2 (H4K16 deacetylase) [66] 
with Sir3 (H4K16 effector) [67], Suvar39/Clr4 (H3K9 

methyltransferase) [5, 68] with HP1/Swi6 (H3K9me3 
effector) [6, 7, 68], and PRC2-Ezh2 (H3K27 methyl-
transferase) [8-11] with Eed, a subunit of PRC2 as the 
H3K27me3 effector [50, 65]. Therefore, inheritance of 
histone modifications can be achieved through similar 
biochemical mechanisms.

A recent study describing allosteric activation of 
PRC2 by H3K27me3 peptide suggests that PRC2 can 
“sense” the neighboring repressive environment and in-
trinsically mediate chromatin modification propagation 
[65]. A similar strategy might be used for other histone-
modifying enzymes, although stimulation of histone 
methyltransferase activities by neighboring methylated 
nucleosomes in cis awaits biochemical demonstration. 
Importantly, this mechanism is compatible with both the 
replication-coupled modification “copying” model and 
the replication-independent modification “maturation” 
model.

Modification reinforcement?
Although the above-mentioned templated modification 

copying events appear practical, at least for some modifi-
cations, accumulating evidence suggests many epigenetic 
states may not be inherited solely by this simple mecha-
nism. 

Several chromatin modifications may act coordinately 
to maintain the epigenetic states reflected by these modi-
fications. One good example is the trio among UHRF1, 
DNMT1 and H3K9 methylation (Figure 3). UHRF1 
recruits DNMT1 to hemimethylated CpG sites during 
DNA replication to facilitate the maintenance of DNA 
methylation [43, 44]; DNMT1 interacts with G9a and 
recruits it to replication foci, potentially for replication-
coupled H3K9me2 reestablishment on the nascent chro-
matin [49]. Interestingly, H3K9me2 catalyzed by G9a 
or H3K9me3 catalyzed by Su(var)39-h can also recruit 
UHRF1 through direct recognition [69] and potentially 
facilitate DNA methylation. This is a clear feedback loop 
with players in this system reinforcing each other for 

Figure 2 Modification spreading model that can also be involved 
in the epigenetic inheritance of histone modifications.
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eventual maintenance of the epigenetic states that they 
present. We expect that similar cases for other chromatin 
modifications will be discovered in the coming years.

Finally, we would like to point out that the transcrip-
tion status of a gene locus itself might play a role in 
maintaining its epigenetic status. Numerous chromatin 
modifiers are known to associate with the transcription 
machinery (for a review, see [70]); therefore, it is easily 
conceivable that active transcription maintained by these 
modifications may in turn facilitate the reestablishment 
of these modifications in the next cell cycle. Although 
less apparent, it is also likely that transcription repression 
mediated by repressive modifications may also in turn 
facilitate the reestablishment of these modifications by 
certain favorable characteristics of the repressed chroma-
tin, which awaits further investigations.

Concluding remarks

In comparison to genetic information which is strictly 
inherited via “code-copying” (DNA replication), recent 
progress suggests that epigenetic inheritance mechanisms 
are much more complicated. Although the mechanisms 
underlying epigenetic inheritance appear to be far less 
faithful or rigid in comparison to DNA replication, they 
do in fact offer an opportunity for plasticity, which is 
critical to the most fundamental role of epigenetic infor-
mation, which is to translate one genome into hundreds 
of epigenomes for the generation of distinct cellular 
functions.
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