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Iron is an essential component of 
oxidative metabolism and a cofactor 
for a variety of enzymes. Because of 
its chemical properties as a transition 
metal, iron can serve both as an electron 
donor and acceptor and, as such, excess 
levels of free iron are toxic. Given this 
potential for toxicity, a number of pro-
teins, including transferrin, transferrin 
receptor, and ferritin, tightly control 
iron transport, uptake, and storage in 
the central nervous system. Patients 
with Parkinson’s disease (PD) show 
a dramatic increase in iron content in 
dopaminergic neurons of the substan-
tia nigra, i.e., the neuronal population 
predominantly affected in PD patients. 
Dopamine is an important neurotrans-
mitter regulating motor control such 
that loss of dopaminergic neurons 
results in the clinical symptomology 
typical of PD including resting tremor, 
postural instability, and poor coordina-
tion of general movements. Given the 
relationship of iron and dopaminergic 
neurons, it has been suggested that an 
imbalance of brain iron homeostasis 
contributes to the pathogenesis of PD. 
However, a major unresolved question 
concerns the molecular mechanism(s) 
involved in iron accumulation in the 

brains of patients with PD. The recent 
study by Jiang and colleagues advances 
our understanding of this [1]. By using a 
PD animal model induced by 6-OHDA 
and a dopaminergic cell culture system, 
they provided direct evidence for a 
subtype of divalent metal transporter 1 
(DMT1+IRE), containing iron response 
element (IRE) at its 3′ untranslated 
region, as a critical player in iron ac-
cumulation. Furthermore, they found 
that iron regulatory proteins (IRPs) 
regulate the induction of DMT1+IRE 
and that subsequent iron influx results 
in the functional loss of mitochondria 
and increase in oxidative stress. 

As highlighted above, cellular iron 
homeostasis is tightly controlled by 
the coordinated expression of proteins 
involved in iron transport, uptake, ex-
port, and storage. Post-transcriptional 
control, mediated by the IRE/IRP 
system, has been suggested as a central 
mechanism to regulate these proteins. 
However, the IRE/IRP system of iron 
regulation is susceptible to oxidative 
stress [2], and the amount of IRP1 is, 
in turn, dependent on the cytosolic free 
iron concentration. In the absence of 
iron or under conditions of oxidative 
stress, IRP1 binds to the IREs of various 
iron proteins to regulate the translation 
of mRNA transcripts. Given the impor-
tance of iron in the pathogenesis of PD, 
it is clearly of importance to understand 
what leads to increased brain iron in PD. 

In this regard, DMT1 might be a key 
regulator of brain iron accumulation 
in PD since both transferrin-dependent 
and -independent mechanisms for cel-
lular transport of iron require DMT1 
for the transport of iron. DMT1, also 
known as natural resistance associated 
macrophage protein 2 (Nramp2), is a 
widely expressed mammalian ferrous 
ion (Fe2+) transporter [3]. Importantly, 
a recent study revealed that DMT1 is 
upregulated in the substantia nigra of 
both MPTP-induced PD models and 
PD patients [4], suggesting dysregu-
lation of DMT1 might play a role in 
the accumulation of iron in PD. In 
the current paper, the authors found 
increase of DMT1+IRE and a positive 
correlation with iron accumulation in 
6-OHDA-induced PD models which led 
them to further investigate the effect of 
DMT1+IRE expression on iron uptake 
in this PD model. Indeed, their data 
clearly show that the increased level of 
DMT1+IRE is associated with eleva-
tions in iron uptake and the production 
of reactive oxygen species and, conse-
quently, oxidative stress. Pretreatment 
with the iron chelator desferrioxamine 
mesylate (DFO) abolished reactive 
oxygen species generation, supporting 
the role of DMT1 in iron accumulation 
in PD (Figure 1).

Interestingly, DMT1 is not only 
increased in PD, but also colocalized 
with amyloid-β in the senile plaques of 
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patients with Alzheimer’s disease (AD) 
[5]. Iron homeostasis is also severely 
deranged in AD, including increased 
redox active iron [6, 7], IRP [8], and 
other iron-regulator proteins [9]. There-
fore, iron accumulation is a prominent 
feature in both types of neurodegen-
erative disease and DMT1 may play 
key pathogenic roles. Supporting this, 
iron accumulation has been implicated 
in the protein aggregations in both PD 
and AD such that removal of free iron 
with DFO can block α-synuclein ag-
gregation [10] and the metal chelators 
reverse amyloid aggregates in brain 
extracts from patients with AD [11] and 
also attenuate toxicity [12]. Given this, 
metal chelation may afford an opportu-
nity to develop novel therapeutics as a 
means to delay the progression of these 
disorders. In this regard, we previously 
suggested that iron chelators conjugated 
with nanoparticles would enable ch-
elators to cross the blood-brain barrier 

and access the brain parenchyma [13]. 
Other approaches, including selective 
monoamine oxidase B inhibitors, selec-
tive calcium channel antagonists, and 
mitochondrial electron transport system 
protectors may also be valuable.

While the study by Jiang and col-
leagues [1] provides insight into the 
molecular mechanism that leads to ex-
cess iron accumulation in PD, because 
an increase of DMT1 is associated with 
normal aging, the factor(s) inducing 
DMT1 in a specific area, such as the 
substantia nigra, remain unclear. Further 
studies with animal models of PD carry-
ing mutations in late-onset genes such 
as LRRK2 may help clarify this issue. 
This consideration aside, the published 
study does provide compelling evidence 
that high levels of DMT1 may be an 
important factor that increases nigral 
neuronal vulnerability and, as such, may 
play a pivotal role in the pathogenesis 
of PD. 
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Figure 1 Oxidative stress induces DMT1 through the IRP/IRE system. DMT1 
enhances iron influx which results in excess iron accumulation in neurons and 
subsequently induces mitochondrial dysfunction, reactive oxygen species, and 
protein aggregation. Therapeutic approaches using antioxidants such as NAC 
or iron chelators such as DFO, may protect neurons from iron-induced toxicity 
in PD. ●: iron; TfR1: Transferrin receptor 1; DMT1: divalent metal transporter 1; 
IRP: iron regulatory protein; IRE: iron response element; NAC: N-acetyl-cysteine; 
DFO: desferrioxamine; ROS: reactive oxygen species.
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