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 Senescence is the process of cellular aging dependent on the normal physiological functions of non-immortalized 
cells. With increasing data being uncovered in this field, the complex molecular web regulating senescence is gradu-
ally being unraveled. Recent studies have suggested two main phases of senescence, the triggering of senescence and 
the maintenance of senescence. Each has been supported by data implying precise roles for DNA methyltransferases, 
reactive oxygen species and other factors. We will first summarize the data supporting these claims and then high-
light the specific role that we hypothesize that p130/Rbl2 plays in the modulation of the senescence process.
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Introduction

Senescence, the process of cellular aging, was initially 
described as the permanent cell cycle arrest that accom-
panied the replicative exhaustion of cultured human fi-
broblasts [1]. It differs from quiescence, which is defined 
as a temporary cell cycle arrest, readily reversible in re-
sponse to proliferative conditions, and is believed to play 
a role in both in vivo aging and cancer [2-8]. Senescent 
cells are marked by characteristic changes in morphol-
ogy, remain metabolically active and will not revert to 
proliferation even under promitogenic conditions [6, 9]. 
Senescence has been heavily studied in vitro and in vivo, 
and while much has been learnt since Hayflick’s initial 
observation, we are still far from fully understanding the 
molecular intricacies of this physiological phenomenon.

Telomere shortening, a normal physiological function 
that occurs during cellular duplication, is a driving force 
behind the activation of the senescence pathway [10-
14]. Senescence can also be triggered by stresses, such 
as DNA-damaging agents, oncogene activation or altered 
chromatin organization [15-17]. These stresses all have 

the potential to initiate or promote neoplastic transforma-
tion, pointing to the importance of understanding senes-
cence on a clinical level.

Senescence, being an end point to the cell cycle, has 
largely been investigated through the study of cell cycle 
regulatory genes. The retinoblastoma (Rb) family pro-
teins together with respective E2F factors are critical in 
the progression and control of the cell cycle, specifically 
in the progression from G0 to S phase [18]. Moreover, 
the role of Rb family proteins as critical effectors of cel-
lular senescence has widely been discussed during recent 
years [19-23]. Three proteins, p105/Rb, p107 and p130/
Rbl2, constitute the Rb family and are characterized by 
a pocket domain involved in protein-protein interaction 
[24].

Unlike other Rb family member proteins, p130/Rbl2 is 
active in G0-arrested cells, where it forms a complex with 
E2F-4 [18]. This complex binds DNA and modulates 
E2F target genes [25, 26]. In response to mitogenic stim-
uli, p130/Rbl2 is inactivated by cyclin-dependent kinases 
(CDKs) [25, 26]. This allows E2F factors to activate E2F 
target genes, allowing the cell cycle to proceed (Figure 
1) [27, 28]. On the contrary, under cellular stresses, such 
as DNA damage, CDKs are inhibited by CDK inhibitors 
and Rb members remain active, thus arresting cell cycle 
progression [27, 28]. While the role of p130/Rbl2 as the 
specific Rb member involved in senescence in response 
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to CDK-inhibition and the functional compensation by 
other Rb family members in cells lacking functional 
p130/Rbl2 have already been discussed (Figure 1) [19, 
21-23], there are now suggestions for a role of p130/Rbl2 
during the initiation, or triggering, of the senescence pro-
cess.

In this review, we summarize the molecular process of 
senescence, dividing it into two separate temporal phas-
es, and introduce our hypothesis of a novel role for p130/
Rbl2 during the triggering of senescence as suggested by 
recent literature.

Two distinct phases in the senescence process

Senescence, a process more complex than originally 
thought, involves both physiological and morphological 
changes to the cells [6, 9]. Our purpose is not to clarify 
all molecular mechanisms involved and studied in senes-
cence, but to give an overview of the process, focusing 
on telomere signaling and the pathways involved in its 
response. For a more complete and detailed explana-
tion of the entire process and all the pathways involved, 
we suggest three recent manuscripts by Muller et al., 
Fridman and Tainsky, and Cichowski and Hahn [6, 29, 

Figure 1 Differential regulation of E2F target genes during G0-G1/S progression. In G0 and early G1 phase, the complex p130/
Rbl2-E2F-4 binds to and represses E2F target genes. In late G1 and G1/S phase, E2F target genes are activated by the E2F-1 
factor, which replaces the p130/Rbl2-E2F-4 complex [26]. The transition of complexes is mediated by mitogenic stimuli, which 
activate cyclin-CDK complexes that in turn phosphorylate and inhibit Rb family members [18]. Different studies have indicated 
that the three pRb family members exhibit a functional overlap, although not a complete redundancy, in many aspects of cell 
regulation. p107 and p130/Rbl2 appear to be redundant in regulating a specific set of E2F-responsive genes that are not sub-
ject to pRb/E2F-mediated repression [76-78]. Interestingly, it has been shown that Rb–/– p107–/–murine embryonic fibroblasts 
(MEFs), although initially subject to growth inhibition, did not enter senescence but established a constant proliferation rate. 
Furthermore, ablation of all Rb-gene family members renders these cells virtually insensitive to growth inhibition and strongly 
increases their proliferation rate, indicating a predominant role of Rb family in cellular senescence [22, 23].
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30]. To better understand the role of p130/Rbl2 in the 
regulation of senescence, we propose to divide the pro-
cess into two distinct phases differing on timing and 
molecular pathways implied. We term the initial phase 
as the triggering of senescence, where cells stop dividing 
but remain metabolically active. This phase is character-
ized by a burst in the expression of p21CIP1, which then 
diminishes as senescence continues, both in vitro and 
in vivo [31-33]. During this phase cells will express a 
characteristic senescent phenotype, which is, however, 
reversible [34]. The second phase, which we term as the 
maintenance of senescence, occurs once the cells pass 
the critical midpoint and become irreversibly arrested [34, 
35]. This phase is characterized by the accumulation of 
p16INK4A, which has been shown to uniquely occur during 
late senescence [31, 32, 35, 36]. Both p21CIP1 and p16INK4a 

are independently able to induce inhibition of the activity 
of cyclin-CDK complexes, thus modulating the hypo-
phosphorylation of Rb family members and E2F target 
gene expression [6, 27, 32, 36, 37]. We believe that the 
distinction between these two phases could be important, 
as diverse molecular pathways have been shown to be in-
volved. Nonetheless it is significant to recognize them as 
phases of a unique process, acting concurrently or in re-
sponse to one another. However, there are also data sup-
porting the view that the two pathways are independently 
activated and regulated instead by the timing of events 
during senescence [38, 39]. While both theories are cur-
rently valid, we propose that there exists a midpoint dur-
ing senescence that divides these two phases.

The triggering of senescence: telomere shortening, 
p53 activation and p21CIP1 accumulation

Triggering of senescence has the role of both decreas-
ing cellular proliferation, as well as preparing the cell 
to cease duplication and maintain its senescent state. 
The initiation of senescence is believed to be triggered, 
in physiological conditions, when progressive telomere 
shortening leads to the activation of p53 [40-42]. Telom-
ere shortening is sensed as DNA damage and is recog-
nized by ataxia telangiectasia mutated (ATM) protein 
[42]. When ATM senses that there is DNA damage, it 
phosphorylates histone H2AX (γ-H2AX), which is found 
at the site of damage. It then recruits TRF1 and TRF2 
followed by Chk1 and Chk2 [38, 43], leading to the acti-
vation of p53 and senescence (Figure 2).

Cyclin-Cdk complexes are critical in continuing the 
progression of the cell cycle. They inhibit Rb family 
member proteins allowing E2F factors to bind and initi-
ate transcription of cell cycle-promoting genes [44]. The 
activation of p53, a critical transcription factor involved 

in cell cycle control pathways, leads to the transcription 
of CDKN1A gene and accumulation of p21CIP1 in senes-
cent cells [45]. p21CIP1 binds to and inhibits the cyclin-
Cdk complexes as well as the proliferating cell nuclear 
antigen (PCNA) through complex formation, thus regu-
lating cell cycle progression, DNA synthesis and DNA 
repair (Figure 2) [6, 32, 46-51].

Telomere shortening continues to be a topic of great 
interest, given its initiating role in senescence, but much 
is yet to be discovered. Gonzalo et al. [52] have shown 
that defects in DNA methyltransferases (DNMTs) lead to 
decreased methylation of subtelomeric regions and elon-
gated telomere length in mouse embryonic stem cells. 
Benetti et al. [53] further show that overexpression of 
DNMTs can rescue DNA methylation in subtelomeric re-
gions of DICER–/– mouse embryonic stem cells. The pre-
cise role of DNMTs in the regulation of telomere length 
remains to be defined, but DNMTs seem to be implicated 
in telomere shortening as well as in the triggering of 
senescence [54, 55]. The principal human DNMTs are 
hDNMT1, hDNMT3a and hDNMT3b [56-58]. Zheng et 
al. [54] have shown that protein levels of DNMT1 and 
DNMT3a increase from young to middle-aged human fi-
broblasts but decrease in senescent fibroblasts. Moreover, 
in non-senescent cells DNMTs methylate the promoter of 
p21CIP1, repressing its transcription [54, 55].

The implication of DNMTs in the triggering of senes-
cence, given the data presented, could be suggested by 
the two following scenarios (Figure 2). First, they could 
act as promoters of progressive telomere shortening, 
leading to the activation of the p53 pathway [52, 53]. 
Second, they could act as transcriptional repressors of 
CDKN1A gene, modulating p21CIP1 transcription [54, 55]. 
It is interesting to note that while the level of DNMTs 
increases in middle-aged human fibroblasts, it decreases 
in senescent fibroblasts [54, 59]. This supports the role 
of DNMTs both in progressive telomere shortening in 
non-senescent cells and the subsequent activation of CD-
KN1A transcription in senescent cells.

During senescence, the regulation of DNMTs likely 
involves p130/Rbl2 (Figure 2). Benetti et al. [53] have 
shown that in DICER–/– mouse ES cells, where there is 
an increase in p130/Rbl2 transcript, there is an aberrant 
elongation of telomeres caused by decreased levels of 
DNMT3a and DNMT3b. Transfection of the miR-290 
cluster, which is involved in the silencing of p130/Rbl2, 
has been shown to rescue DNMT levels. The direct in-
volvement of p130/Rbl2 in the triggering of senescence 
is supported by an intriguing result by Lehmann et al. [60], 
where silencing of p130/Rbl2 in p105/Rb–/– cells led to 
premature senescence, while silencing of p107/Rbl1 led 
to resistance of irradiation-induced senescence. The spe-
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cific role of p130/Rbl2, but not other Rb family proteins, 
in the regulation of DNMTs could explain this. It could 
then be hypothesized that the silencing of p130/Rbl2 
would accelerate telomere shortening through deregula-
tion of DNMTs, thus triggering senescence. These are 
only observations and must be confirmed through fur-
ther studies; however, the role of p130/Rbl2 in telomere 
shortening and in the triggering of senescence is strongly 
suggested.

The maintenance of senescence

The maintenance of senescence is still not well de-

fined. The main effector seems to be p16INK4a, inhibitor 
of Cyclin D-associated kinases [61, 62], which is able to 
independently induce senescence [31, 36, 63]. While its 
exact role is not completely understood, it is believed to 
be involved in the maintenance of cell cycle arrest during 
the senescence process, because it accumulates in late 
senescence [32] and its expression and function are in-
dependent of telomere status [64, 65]. p16INK4a maintains 
the activity of Rb family members by preventing cyclin 
D1 from forming complexes with CDKs 4 and 6, which 
are initially responsible for Rb family inhibition [31]. 
Beauséjour et al. [34] have shown that proliferating cells 
with p16INK4a stably silenced can proceed into senescence; 
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Figure 2 Progressive telomere shortening leads to the activation of the senescence pathway. Short telomeres are sensed by 
ATM, or by ATR in ATM–/– cells [38], as DNA damage, which activates p53 (a). p53, acting as a transcriptional activator of CD-
KN1A gene, leads to the activation of p21CIP1 (b), which binds to cyclin-CDK complexes, blocking their enzyme activity [45-51]. 
As a result, Rb members cannot be phosphorylated and inactivated by cyclin-CDK complexes, leading to cell cycle arrest (c) 
[44]. Recent studies suggest that DNMTs could be implicated in the activation of the senescence process through the methy-
lation of subtelomeric regions leading to progressive telomere shortening [52, 53], and through transcriptional repression of 
CDKN1A gene, modulating p21CIP1 transcription [54] (d). These contrary functional regulations could be understood as a “control 
mechanism”. In fact, when DNMTs are silenced and telomere shortening is compromised, the transcription of CDKN1A still 
leads to premature senescence in human cells [55]. Benetti et al. [53] have also shown that p130/Rbl2 could have a specific 
role in telomere length regulation through the modulation of DNMT levels, specifically DNMT3a and DNMT3b (e).
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however, they maintain elevated levels of p21CIP1, and the 
subsequent suppression of p53 can completely reverse 
the senescent phenotype. Instead, if p16INK4a is stably si-
lenced after the cells have entered senescence, then sup-
pression of p53 cannot reverse the senescent phenotype.

Evidence suggests a specific role for the p16INK4a/
Rb pathway in the formation of senescence-associated 
heterochromatic foci (SAHF), a heterochromatic DNA 
structure that accumulates in senescent human cells 
[20, 66-68]. First, Rb interacts with the histone methy-
lase, Suv39H1, which methylates lysine 9 of histone 
H3 (K9M-H3) and forms a complex with methyl-lysine 
binding protein, HP1, in the promoter region of E2F tar-
get genes, resulting in transcriptional repression, which is 
coincident with SAHF formation in senescence cells [20, 
69, 70]. In fact, SAHF, which are rich in K9M-H3 and 
HP1, are induced by enforced p16INK4a expression and 
are reduced by suppression of p16INK4a or p105/Rb [20]. 
Second, p16INK4a/Rb cooperate with the ASF1a/HIRA 
pathway to drive chromosome condensation and SAHF 
formation [68, 71, 72].

Recently, it has been shown that once senescence be-
comes irreversible, there is a p16INK4a-dependent activa-
tion of reactive oxygen species (ROS), which maintain 
their levels through a p16INK4a-independent positive feed-
back mechanism [35, 73]. The role of ROS in senescence 
remains unknown, as do many other aspects of the se-
nescence process. However, there is now suggestion for 
a p16INK4a-dependent midpoint in the senescence process, 
which leads to both SAHF formation and activation of 

ROS production. Once the midpoint is surpassed, inde-
pendently from p16INK4a levels, it would no longer be pos-
sible for the cell to return to “youth” (Figure 3).

Conclusion

The role of Rb family members in senescence has yet 
to be clearly defined. It is known that all Rb family mem-
bers are implicated in the senescence process, but there 
are suggestions for a specific role of p130/Rbl2 that does 
not simply represent the compensation of p105/Rb [19, 
21]. Recently, it has been shown that downregulation of 
p130/Rbl2 by siRNA in p105/Rb–/– cells caused prema-
ture senescence [60], instead of prolonged life as would 
be expected if p130/Rbl2 acted in substitution of p105/
Rb. To better understand the different roles of proteins 
that share similar structure and function, it is important 
to understand the interactions with their respective ef-
fector molecules. E2F-1, E2F-2 and E2F-3 can be bound 
by p105/Rb and are present only after mitogenic stimuli, 
whereas E2F-4, bound by p130/Rbl2, is much more 
abundant and functional in G0-arrested cells than other 
E2F factors [35, 74, 75]. During senescence, Rb mem-
bers block the transcriptional activity of E2F factors [19-
21]. p130/Rbl2 on the other hand, is hypothesized to play 
a specific role in the triggering of senescence through its 
regulation of DNMTs [53]. The premature senescence 
found in p130/Rbl2-silenced cells could be explained by 
an excessive presence of DNMTs that could facilitate the 
shortening of telomeres [53, 60].

Figure 3 p16INK4a activation of maintenance of senescence. The maintenance of senescence is obtained after the cell sur-
passes the “midpoint”, regulated by the p16INK4a/Rb pathway [33]. Once this occurs, cells cannot “go back”. It is suggested 
that this irreversible state is caused by two processes, both of which represent consequences of the p16INK4a/Rb pathway: the 
formation of irriversibly silenced senescence-associated heterochromatic foci (SAHF) [20, 66-72] and the production of reac-
tive oxygen species (ROS) that maintain their levels through a positive feedback mechanism [73].
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While it is understood that p130/Rbl2 plays an impor-
tant role in cell cycle arrest, taking a critical look at the 
current literature suggests evidence supporting its unique 
role in cellular senescence. Here we have attempted 
to analyze how its role could be implicated given the 
current literature. Furthermore, we have discussed the 
evidence for a specific midpoint in senescence that deter-
mines whether the cell can revert back into the cell cycle 
or can only remain senescent and proceed toward cell 
death. Clearly, additional studies are needed to elucidate 
the entire senescence pathway and the specifics of p130/
Rbl2 function. The senescence process includes various 
pathways and is indeed a complex molecular mechanism 
that is only beginning to be appreciated in recent years.
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