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Berberine is identified to lower the serum cholesterol level in human and hamster through the induction of low 
density lipoproteins (LDL) receptor in hepatic cells. To evaluate its potential in preventing atherosclerosis, the effect 
of berberine on atherosclerosis development in apolipoprotein E-deficient (apoE−/−) mice was investigated. In apoE−/− 
mice, berberine induced in vivo foam cell formation and promoted atherosclerosis development. The foam cell for-
mation induced by berberine was also observed in mouse RAW264.7 cells, as well as in mouse and human primary 
macrophages. By inducing scavenger receptor A (SR-A) expression in macrophages, berberine increased the uptake 
of modified LDL (DiO-Ac-LDL). Berberine-induced SR-A expression was also observed in macrophage foam cells in 
vivo and in the cells at atherosclerotic lesion. Analysis in RAW264.7 cells indicated that berberine induced SR-A ex-
pression by suppressing PTEN expression, which led to sustained Akt activation. Our results suggest that to evaluate 
the potential of a cholesterol-reducing compound in alleviating atherosclerosis, its effect on the cells involved in ath-
erosclerosis development, such as macrophages, should also be considered. Promotion of foam cell formation could 
counter-balance the beneficial effect of lowering serum cholesterol. 
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Introduction

Reduction of serum cholesterol level has been proven 
as an effective way to prevent atherosclerosis develop-
ment [1]. The success of statin drugs and ezetimibe in 
preventing atherosclerosis by reducing serum low densi-
ty lipoproteins (LDL) cholesterol level has instigated the 
search for cholesterol-controlling products [1-4]. Recent-
ly, berberine, a natural alkaloid isolated from Huanglian 
(Coptis chinensis), is reported to lower serum cholesterol 
level in human and hamster [5]. The effect of berberine 
on lowering serum LDL cholesterol is mediated by stabi-
lizing LDL receptor mRNA in the liver cells [5, 6]. This 

represents a different mechanism from statins, which 
induce LDL receptor expression through inactivating 
3-hydroxy-3-methylglutaryl coenzyme A reductase [2]. 

Berberine has been used as a non-prescription drug to 
treat diarrhea and gastroenteritis in China since 1950s. It 
is reported to have anti-diabetic effects in insulin-respon-
sive cells and animal models [7]. In 3T3-L1 adipocytes 
and L6 myotubes, berberine activates AMP-activated 
protein kinase and induces GLUT4 translocation [7]. 
During 3T3-L1 adipocyte differentiation induction, ber-
berine reduces the lipid accumulation in 3T3-L1 cells by 
inactivating PPARγ [7, 8]. These beneficial metabolic 
effects of berberine and its history as a non-prescription 
drug in China suggest that berberine has the potential to 
be a drug for treating hyperlipidemia, hyperglycemia and 
obesity. 

Atherosclerosis is a chronic inflammation condition 
resulting from the interaction between lipoproteins, 
monocyte-derived macrophages, T lymphocytes and 
other cellular elements in the arterial wall [9-11]. During 
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atherosclerosis development, the attraction of circulating 
monocytes by modified LDL into subendothelial arte-
rial space and their differentiation into macrophages are 
the initial events [12-15]. In the subendothelial arterial 
space, the uptake of modified LDL by macrophages leads 
to the formation of foam cells in which a large amount 
of cholesteryl ester droplets are accumulated [9, 15-17]. 
The release of cholesteryl lipids from apoptotic foam cell 
forms the initial plaques in subendothelial arterial space. 
The role of foam cells as the major culprit in atheroscle-
rosis has been further demonstrated by the resistance to 
atherosclerosis in mice that lack macrophages [18, 19].

In macrophage, the uptake of modified LDL by scav-
enger receptors induces the formation of foam cell [20-
23]. Besides hypercholesterolemia, other factors such as 
LDL oxidation and increased scavenger receptors can 
also disrupt the cholesterol homeostasis in macrophage, 
induce foam cell formation and cause atherosclerosis. 
As berberine targets multiple types of cells such as he-
patocytes, adipocytes and muscle cells [5-8], it is im-
portant to ascertain whether berberine has any effect on 
monocytes/macrophages, especially on foam cell forma-
tion. In order to evaluate the potential of berberine as a 
cholesterol-controlling drug for preventing atherosclero-
sis, its effect on atherosclerosis development needs to be 
more carefully investigated. In this report, we show that 
in apolipoprotein E-deficient (apoE−/−) mice, berberine 
promotes atherosclerosis development. The promotion of 
atherosclerosis resulted from berberine-induced in vivo 
foam cell formation. Using RAW264.7 cells, which can 
be induced by oxidized LDL (oxLDL) to form foam cells 
[24], we have identified that berberine induces the ex-
pression of scavenger receptor A (SR-A) through modu-
lating the PI3-kinase signaling pathway. Specifically, by 
inactivating PPARγ, berberine inhibits PTEN expression 
and thus enhances PI3-kinase signaling. 

Results

Berberine promotes atherosclerosis development in 
apoE−/− mice by inducing in vivo foam cell formation

ApoE−/− mouse is a well-established animal model for 
studying atherosclerosis [25-27]. Because berberine is 
poorly absorbed if taken orally [28], we administrated 
berberine to mice by intraperitoneal injection. On aver-
age, berberine-treated mice took less food and gained 
less weight than the control mice (Figure 1A). After a 
15-week berberine treatment, there was no significant 
change in the total serum triglycerides, LDL cholesterol 
or HDL cholesterol levels (Figure 1B). However, more 
atherosclerotic lesions were developed in berberine-treat-
ed mice (Figure 1C). The average size of atherosclerotic 

lesions in berberine-treated mice was about 50% larger 
than that in control mice (Figure 1D). 

Because there was no change in serum cholesterol in 
berberine-treated mice, the berberine-promoted athero-
sclerosis would likely have resulted from other factors 
than serum cholesterol (Figure 1B). As foam cell is the 
major culprit in atherosclerosis [18, 19], peritoneal mac-
rophages were collected from berberine-treated apoE−/− 
mice and analyzed for foam cell formation. The perito-
neal macrophages collected from control apoE−/− mice 
exhibited the typical macrophage morphology and con-
tained little amount of lipid droplets (Figure 1E). In con-
trast, most macrophages collected from berberine-treated 
apoE−/− mice contained massive amount of lipid droplets 
and the cellular cholesterol content was increased by sev-
eral folds (Figure 1E and 1F). 

The promotion of in vivo foam cell formation by ber-
berine was confirmed by in vitro experiments with mouse 
primary macrophages. In normal culture medium with 
10% fetal bovine serum (FBS), no foam cell was induced 
from the cultured mouse peritoneal macrophages (Figure 
2A and 2B). When the cultured primary macrophages 
were treated with berberine, foam cell formation was 
induced and cellular cholesterol level was also increased 
(Figure 2A and 2B). The induction of foam cell forma-
tion by berberine in human primary macrophages was 
also observed (Figure 2C). Although the effect of ber-
berine on serum cholesterol level in apoE−/− mouse was 
different from its reported effect in human (Figure 1B) 
[5], the promotion of foam cell formation was similar in 
cultured primary macrophages of both mouse and human 
(Figure 2). 

Berberine promotes foam cell formation by inducing 
SR-A

In comparison to primary cells, the in vitro cultured 
cell line is usually more feasible for performing mecha-
nistic studies. Mouse RAW264.7 cells are a macrophage-
like cell line and can be induced to form foam cells in the 
presence of oxLDL (Supplementary information, Figure 
S1) [24]. It could also be induced to form foam cells by 
berberine without the addition of oxLDL (Figure 2A). 
The foam cell formation and cholesterol accumulation 
induced by berberine in RAW264.7 cells were very simi-
lar to that in mouse primary macrophages (Figure 2A and 
2B). Thus RAW264.7 cells appear to be a good model 
for studying the mechanism of berberine induction of 
foam cell formation (Supplementary information, Figure 
S1). 

SR-A and CD36 are two most important scavenger re-
ceptors for the uptake of modified LDL, which promotes 
foam cell formation in macrophages [22]. Berberine 
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treatment increased the levels of SR-A on RAW264.7 
cell surface, but not of CD36 (Figure 3A and 3B). It also 
induced DiO-Ac-LDL uptake in RAW264.7 cells (Figure 
3C). This berberine-induced DiO-Ac-LDL uptake clearly 
resulted from SR-A increase, as it was specifically in-

hibited by antibody against SR-A (Figure 3D). In addi-
tion, berberine did not affect the cholesterol efflux from 
RAW264.7 cells (Figure 3E). These observations suggest 
that berberine-induced SR-A is the primary cause for the 
increased foam cell formation.

Figure 1 Berberine promotes atherosclerosis development by inducing in vivo foam cell formation in apoE−/− mice. (A) Food 
intake and body weight of mice (n = 10 per group). The daily food intake was measured every other week. The results are 
the average of eight measurements. The body weight is the average weight of 10 mice at the beginning on Western diet (W0) 
and after 15-week experiment (W15). C, mice with vehicle treatment; B, mice with berberine treatment (5 mg/kg/day). (B) 
Serum lipids. The labels are the same as in panel A. The results are the average of 10 mice. (C) Atherosclerotic lesions in 
the aortic root after 15-week experiment. Cryosection of aortic sinus was stained with Oil-red-O. Representative photographs 
are shown. (D) The average lesion size. For each mouse, the Oil-red-O-stained areas were measured in four sections of the 
aortic sinus and these were averaged to obtain the lesion size of one mouse. For each group, 10 mice were averaged. *P < 
0.05. (E) In vivo foam cell formation in berberine-treated mice (n=6 per group). Oil-red-O staining of peritoneal macrophages 
isolated from mice treated with berberine for 2 weeks (2.5 mg/kg/day BBR and 5 mg/kg/day BBR) or not (Control). Represen-
tative photographs are shown. (F) Cholesterol content of peritoneal macrophages. The results are the average of six mice. 
B2.5, 2.5 mg/kg/day berberine; B5, 5 mg/kg/day berberine. *P < 0.05, **P < 0.01. 
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SR-A was expressed at a relatively constant level in 
RAW264.7 cells (Figure 3F). However, it was greatly 
induced by berberine treatment (Figure 3A and 3F). The 
analysis of SR-A mRNA and its gene promoter activ-
ity showed that berberine induced SR-A by increas-
ing gene transcription (Figure 3G and 3H). To identify 
the signal molecules involved in berberine-induced 
SR-A transcription, the effect of PI3-kinase inhibitor 
(LY294002) or MEK inhibitors (PD98059 and U0126) 
on berberine-induced foam cell formation was analyzed. 
Only LY294002, but not PD98059 or U0126, inhibited 

berberine-induced foam cell formation (Supplementary 
information, Figure S2). Interestingly, LY294002 did 
not inhibit the basal SR-A expression, but inhibited ber-
berine-induced SR-A expression (Figure 3H and 3I). 

To ascertain whether berberine promotes atheroscle-
rosis development in apoE−/− mouse by inducing SR-A, 
atherosclerotic lesions were analyzed for SR-A expres-
sion. As shown in Figure 4A, SR-A expression in the 
cells of atherosclerotic lesions was greatly enhanced in 
berberine-treated apoE−/− mice. Western blot of aorta 
samples also revealed the increased SR-A expression in 

Figure 2 Berberine induces in vitro foam cell formation. Bar = 10 μm. (A) Berberine induced foam cell formation in cultured 
mouse peritoneal macrophage (macrophage) and RAW264.7 cell (RAW264.7). +10 μM BBR, +20 μM BBR and +40 μM BBR 
indicate berberine concentration. Control, no berberine treatment. (B) Cholesterol of mouse peritoneal macrophage and 
RAW264.7 cell. The results are the average of three independent experiments. *P < 0.05, **P < 0.01. 5 μM B, 10 μM B and 
20 μM B indicate berberine concentration. (C) Berberine induced foam cell formation in human primary macrophage. 
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Figure 3 Berberine specifically induces scavenger receptor A expression. *P < 0.05, **P < 0.01. (A) Cell surface SR-A. The 
flow cytometry graph is the fluorescence labeling by anti-SR-A antibody in RAW264.7 cells treated with (Red line) or with-
out (Gray line) 10 μM berberine. The green line is the blank IgG. The bar graph is the average result of three experiments. 
C, control; B, berberine-treated cell. (B) Cell surface CD36. The labels are the same as in panel A. (C) DiO-Ac-LDL uptake. 
Gray line, control cell; Red line, berberine-treated cell; Green line, without adding DiO-Ac-LDL. (D) Inhibition of DiO-Ac-
LDL uptake by anti-SR-A antibody. The gray bars are DiO-Ac-LDL uptake in control RAW264.7 cells blocked with blank IgG 
(IgG), anti-SR-A antibody (α-SRA) or anti-CD36 antibody (α-CD36). The red bars are DiO-Ac-LDL uptake in berberine-treated 
RAW264.7 cells blocked with antibody. (E) Cholesterol efflux. RAW264.7 cells were labeled with 3H-labeled cholesterol (Per-
kin-Elmer) and cholesterol efflux was measured in the presence or absence of 5 μM berberine as described by de la Llera 
Moya et al. [47]. The results are the average of three experiments. (F) Time course of berberine induced SR-A expression. 
SR-A in RAW264.7 cell treated with or without (Control) 5 μM berberine (5 μM BBR) for the indicated times (0, 6, 12, 24, 48 
and 96 h) was detected by western blot. (G) Real-time PCR of SR-A mRNA in RAW264.7 cell treated with or without (Ctrl) 
berberine for 48 h (2.5 μM BBR or 10 μM BBR). The results are the average of four experiments. (H) SR-A promoter activity. 
The luciferase analysis was carried out in 293T cells transfected with SR-A promoter-luciferase reporter plasmid and treated 
with berberine (5 μM BBR, 10 μM BBR and 20 μM BBR), LY294002 (10 μM LY and 20 μM LY) or both (10 B+10 LY and 10 
B+20 LY) for 24 h. The results are the average of four experiments. (I) Inhibition of berberine-induced SR-A expression by 
LY294002. SR-A in RAW264.7 cell treated with berberine (5 μM BBR), LY294002 (5 μM LY or 20 μM LY) or both (5 B+5 LY 
and 5 B+20 LY) for 48 h was detected by western blot. 
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berberine-treated apoE−/− mice (Figure 4B and 4C). In 
peritoneal macrophages obtained from berberine-treated 
apoE−/− mice, SR-A was increased in a dose-dependent 
manner (Figure 4D and 4E). Human primary macrophage 
samples from three of the four volunteers also exhibited 
berberine-induced SR-A expression (Figure 4F).

Berberine induces SR-A expression by activating PI3-
kinase signaling

LY294002, which inhibited berberine-induced SR-A 
expression and foam cell formation (Figure 3H, 3I and 
Supplementary information, Figure S2), is a widely used 
PI3-kinase inhibitor. The inhibitory effect of LY294002 
on foam cell formation could be reversed by the addition 
of 3-phosphorylated phosphatidylinositol (dipalmitoyl-
L-alpha-phosphatidylinositol-3, 4, 5-trisphosphate) 
(Figure 5A). The PI3-kinase signal cascade includes PI3-

kinase that catalyzes the formation of 3-phosphorylated 
phosphatidylinositols and PTEN that dephosphorylates 
3-phosphorylated phosphatidylinositol [29]. By blocking 
PI3-kinase activity, LY294002 inhibited Akt-1 activation 
(Supplementary information, Figure S2) [30]. Berberine 
treatment decreased PTEN expression without affect-
ing PI3-kinase (p85 and p110 subunits) (Figure 5B and 
5C). Decrease of PTEN could increase the stability of 
3-phosphorylated phosphatidylinositols, which leads to 
sustained Akt-1 activation (Figure 5D). 

Berberine reduced PTEN mRNA levels (Figure 5E). 
The activation of Akt only after prolonged berberine 
treatment indicated a relatively slow effect on PTEN ex-
pression, likely through transcription regulation (Figure 
5D and Supplementary information, Figure S2). It is re-
ported that berberine inhibits PPARγ activity by increas-
ing PPARγ phosphorylation [7, 8] and PTEN transcrip-

Figure 4 Berberine induces SR-A expression in vivo. (A) SR-A expression in cells at atherosclerotic lesion. Sections of aortic 
sinus were stained with anti-SR-A antibody (brown) and the nuclei were counter-stained with hematoxylin (blue). Representa-
tive photographs are shown. Control, control apoE−/− mice; BBR treated, apoE−/− mice treated with berberine for 15 weeks. 
(B) Western blot for SR-A in aorta samples. BBR5.0, apoE−/− mice treated with 5 mg/kg/day berberine for 4 weeks; M1, M2 
and M3, individual mice. (C) Densitometer scanning of western blot in panel B. (D) Western blot for SR-A in peritoneal mac-
rophages isolated from apoE−/− mice treated with or without (Ctrl) 2.5 mg/kg/day or 5 mg/kg/day berberine for 2 weeks (BBR2.5 
and BBR5.0). (E) Densitometer scanning of western blot in panel D. (F) SR-A expression in human primary macrophages. 
Human primary macrophages of four volunteers (S1-4) were treated with 10 μmol/l berberine or not for 24 h. SR-A mRNA 
was determined by real-time RT-PCR. The ratio of berberine treatment to control was plotted. 
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tion is regulated by PPARγ [31, 32]. The inhibition of 
PPARγ by berberine was clearly illustrated by berberine-
mediated inhibition of 3T3-L1 adipocyte differentiation, 
as PPARγ is one of the most important transcription 
factors in adipocyte differentiation (Figure 6A) [7, 8, 
33, 34]. In RAW264.7 cells, berberine inhibited PTEN 
expression induced by troglitazone, an agonist of PPARγ 
(Figure 6B). The inhibition of PPARγ by berberine in 
RAW264.7 cells could also be confirmed by the suppres-
sion of other PPARγ target genes, such as adipose fatty 

acid-binding protein (aP2) and lipoprotein lipase (LPL) 
(Figure 6C). The expression of these two genes was 
greatly inhibited in berberine-treated RAW264.7 cells 
(Figure 6C). Consistently, berberine increased PPARγ 
phosphorylation in these cells (Figure 6D). 

Discussion

By screening herb compounds for induction of LDL 
receptor expression in HepG2 cells, berberine was identi-

Figure 5 Berberine reduces PTEN expression. (A) Oil-red-O staining of RAW264.7 cells treated with 10 μM LY294002 (+LY), 
5 μM dipalmitoyl-L-alpha-phosphatidylinositol-3, 4, 5-trisphosphate (+PIP3), or both (+LY & PIP3) for 4 days. Bar = 10 μm. 
Control, RAW264.7 cells 4 days after cell-cell contact. Cells were replated and then stained. (B) p85 subunit and p110 sub-
unit of PI3-kinase in RAW264.7 cells treated with 5 μM berberine (B) for the indicated times (6 h, 24 h and 48 h) or not (C). 
(C) PTEN in RAW264.7 cells treated with berberine. The labels are the same as in panel B. (D) Akt-1 phosphorylation in 
berberine-treated RAW264.7 cell. (E) PTEN mRNA in RAW264.7 cells treated with or without (Ctrl) berberine for 48 h (2.5 μM 
BBR and 10 μM BBR) was measured by real-time RT-PCR. The results are the average of three experiments. *P < 0.05, **P 
< 0.01.
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fied to stabilize LDL receptor mRNA [5, 6]. Subsequent-
ly, it was found to reduce serum cholesterol in human 
and hamster [5]. However, whether berberine treatment 
reduces the risk of atherosclerosis in human, as other 
cholesterol-reducing drugs do, requires further investi-
gation. As a model for human atherosclerosis, apoE−/− 
mice were used to evaluate the effect of berberine on 
atherosclerosis development. In this mouse model, ber-
berine aggravated the development of atherosclerosis by 
promoting in vivo foam cell formation (Figure 1). This 
was confirmed by in vitro studies in mouse and human 
primary macrophages, as well as in mouse RAW264.7 
cells (Figure 2). Thus, the induction of foam cells by ber-
berine may counter-balance its beneficial effects of cho-
lesterol reduction. For example, lovastatin, a statin drug 
for lowering serum cholesterol and reducing the risk of 

atherosclerosis, does not promote macrophage foam cell 
formation (Supplementary information, Figure S3). Our 
results suggest that to evaluate the effect of a cholesterol-
reducing compound on atherosclerosis, its effect on the 
cells involved in atherosclerosis development, such as 
macrophages, should also be considered.

Atherosclerosis is a chronic inflammation condition 
resulting from the interaction between lipoproteins, 
monocyte-derived macrophages, T lymphocytes and 
other cellular elements in the arterial wall [9-11]. Many 
cytokines, such as interleukins and macrophage-associat-
ed cytokines, are locally expressed in the atherosclerotic 
lesions and critically involved in the pathogenesis of this 
disease. They are mediators of the immuno-inflammatory 
response and could coordinate the cell interactions [11, 
35]. Berberine is also reported to have anti-inflammatory 

Figure 6 Berberine inhibits PPARγ activity in RAW264.7 cell. (A) 3T3-L1 adipocyte differentiation inhibited by berberine. 3T3-
L1 adipocyte differentiation was induced with the standard protocol [45, 46]. Berberine (+10 μM BBR and +100 μM BBR), 
troglitazone (+10 μM Tro) or both (T+10 μM B and T+100 μM B) was added from day 0. Oil-Red-O staining was carried out 
on day 10. (B) Berberine inhibits troglitazone-induced PTEN expression in RAW264.7 cell. RAW264.7 cells were treated with 
berberine, troglitazone or both for the indicated times. PTEN was detected by western blot. (C) Real-time RT-PCR analysis 
for PPARγ target genes in berberine-treated RAW264.7 cell. The mRNA of target genes in RAW264.7 cells treated with or 
without (C) 10 μM berberine for 48 h (B) was determined by real-time RT-PCR. aP2, adipose fatty acid-binding protein; LPL, 
lipoprotein lipase. The results represent three independent experiments. **P < 0.01. (D) Berberine induces PPARγ phos-
phorylation in RAW264.7 cell. Cells were treated with berberine for 2 h at indicated concentration. Phosphorylated PPARγ 
(pPPARγ) and PPARγ protein (PPARγ) were detected by western blot.
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effects in vitro and in vivo [36-38]. The administration 
of neutral sulfate berberine significantly reduced plasma 
tumor necrosis factor-α, interferon-γ and nitric oxide lev-
els in mice challenged with lipopolysaccharide [38].  It is 
well known that anti-inflammation favors the protection 
from atherosclerosis. The anti-inflammation effect of ber-
berine could have beneficial impact on preventing ath-
erosclerosis. However, our study showed that berberine 
promoted atherosclerosis development in apoE−/− mice. It 
is possible that the induction of foam cells by berberine 
overrides its beneficial effects of anti-inflammation in 
this mouse model for atherosclerosis.

The cholesterol-reducing effect of berberine in human 
and hamster results from the increased LDL receptor lev-
el in the liver [5]. However, in apoE−/− mouse, berberine 
treatment did not increase the LDL receptor mRNA or 
protein in the liver (Supplementary information, Figure 
S4). These results may explain why berberine does not 
alter the serum cholesterol and lipids in apoE−/− mouse 
(Figure 1B). Despite the difference in lowering serum 
cholesterol between mouse and human, the effect of 
berberine on promoting foam cell formation is similar 
in both mouse and human macrophages (Figure 2 and 
Figure 4). Because the serum cholesterol level is not al-
tered in berberine-treated apoE−/− mouse, the aggravation 
of atherosclerosis appears to be related to the effect of 
berberine on SR-A expression in macrophages (Figure 
4). As berberine targets multiple types of cells, such as 
hepatocytes, adipocytes, muscle cells and macrophages 
(Figure 2 and Figure 4) [5-8], the animal study in apoE−/− 
mouse is essential for understanding its potential effect 
in human atherosclerosis. 

The mechanism of berberine-induced foam cell for-
mation is examined using RAW264.7 cells and primary 
macrophages (Figure 3-5). SR-A increase appears to 
be the major effect through which berberine alters the 
cholesterol homeostasis in macrophages (Figure 3 and 
Supplementary information, Figure S5). In our current 
study, berberine induces SR-A expression through the 
activation of PI3-kinase signaling cascade (Figure 5 and 
Supplementary information, Figure S2). The involve-
ment of PI3-kinase signaling cascade in SR-A expres-
sion is also found in human vascular smooth muscle 
cells [39]. The temporal order of berberine’s effects on 
PI3-kinase signaling cascade and PPARγ supports the 
fact that PPARγ is the target of berberine (Figure 5 and 
Figure 6) [7, 8]. Berberine-induced PPARγ phosphoryla-
tion precedes the decrease of PTEN and the activation of 
Akt (Figure 5C, 5D, 6D and Supplementary information, 
Figure S2). Only after prolonged berberine treatment 
are berberine’s effect on PTEN and Akt observed. As in 
adipocytes and myotubes [7, 8], PPARγ might also be 

the target of berberine in macrophages (Figure 6). The 
detailed mechanism of berberine-induced PPARγ phos-
phorylation is under investigation. 

Materials and Methods

Materials
Anti-SR-A antibody was from Serotec. Anti-CD36 antibody 

was from Cascade Bioscience. Anti-p85α, anti-p110α, anti-PPARγ, 
anti-Akt-1 and anti-phospho-Akt (Ser473-phosphorylated form) 
antibodies were from Santa Cruz Biotechnology. Anti-phospho-
PPARγ antibody was from Upstate Biotechnology. Anti-PTEN, 
horseradish peroxidase-conjugated and fluorescein isothiocyanate 
(FITC)-conjugated secondary antibodies and berberine were from 
Sigma. Lipoprotein-deficient FBS and 3, 3'-dioctadecyloxacarbo-
cyanine perchlorate-labeled acetylated LDL (DiO-Ac-LDL) were 
from Biomedical Technologies. LY294002 and dipalmitoyl-L-
alpha-phosphatidylinositol-3, 4, 5-trisphosphate were from Calbio-
chem. 

Animal experiments
ApoE−/− mice (C57BL/6J) from the Jackson Laboratory (Bar 

Harbor, ME, USA) were housed at 22 ± 2 °C, 55% ± 5% relative 
humidity, with a 12-h light/dark cycle. 8-week-old male mice (n 
= 10 per group) were placed on a Western diet (21% fat, 0.21% 
cholesterol; D12079B; Research Diets Inc.) and received daily 
intraperitoneal injection of either vehicle or berberine (5 mg/kg/
day) for 15 weeks. After an overnight fasting period, 100 µl blood 
was drawn by tail bleeding. The serum lipids were determined by 
enzymatic procedures (Wako Chemicals). 

For histological and immunohistochemical analyses, mice 
were sacrificed and hearts were perfused with 20 ml saline and 10 
ml 3.7% buffered formalin. Serial cryosections of 10-μm thick-
ness were taken from the region of the proximal aorta through 
the aortic sinuses and stained with Oil-red-O. The lesion size was 
quantified by measuring Oil-red-O stained area. The mean lesion 
size for each individual mouse was calculated from four sections, 
starting at the appearance of the tricuspid valves [40]. SR-A in 
cells at atherosclerotic lesion was stained with anti-SR-A antibody. 
3, 3′-diaminobenzidine (Sigma) was used to reveal SR-A by brown 
colorization. Cell nuclei were counterstained with hematoxylin. 

For western blot of SR-A in aorta sample, apoE−/− mice (n = 6 
per group) fed on Western diet and treated with berberine (5 mg/
kg/day) for 4 weeks were sacrificed and perfused with 20 ml sa-
line; the aorta were immediately excised and frozen in liquid nitro-
gen. After tissue homogenization, protein extract was subjected to 
western blot for SR-A.

All animal experiments were carried out in accordance with the 
National Institutes of Health Guide for the Care and Use of Labo-
ratory Animals and were approved by the Biological Research 
Ethics Committee of Shanghai Institutes for Biological Sciences. 

In vivo and in vitro foam cell formation
8-week-old male apoE−/− mice (n = 6 per group) were treated by 

berberine (2.5 mg/kg/day or 5 mg/kg/day) or vehicle control for 2 
weeks and the peritoneal macrophages were collected as described 
by Takahashi et al. [41]. 3 days after peritoneal injection of 1 ml 
3% thioglycolate broth, macrophages were obtained by peritoneal 
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lavage with Dulbecco's modified Eagle's medium (DMEM) con-
taining 10% FBS. Cells were plated at 1.0 × 106 per ml of DMEM 
with 10% FBS. After incubation for 3 h at 37 oC, the non-adherent 
cells were washed away and the adherent cells were collected for 
western blot, cholesterol measurement or Oil-red-O staining. 

Mouse peritoneal macrophages collected from 8-week-old male 
C57BL/6 mice were cultured in DMEM with 10% FBS for 24 h 
and treated with berberine for additional 48 h. Mouse RAW264.7 
cells were plated (5 × 105 cells per 35-mm dish), cultured in 
DMEM with 10% FBS for 48 h and treated with berberine for 
additional 48 h. The cells were harvested or fixed for Oil-red-O 
staining. 

Human primary monocytes were isolated from the blood of 
healthy normalipidermic volunteers of age between 25 and 30 
years with a life-time non-smoking history, no acute or chronic ill-
ness, and no current medication [42, 43]. Peripheral blood mono-
nuclear cells isolated by Ficoll-Hypaque gradient centrifugation 
were suspended in DMEM with 10% heat-inactivated FBS and 
seeded into 60-mm dishes (8 × 105 cells/ml). After 2 h incubation, 
the non-adherent cells were washed away  and the medium was re-
placed with macrophage-SFM medium (Gibco) supplemented with 
500 U/ml of granulocyte-macrophage colony-stimulating factor 
(PetroTech) and penicillin (100 U/ml)-streptomycin (100 μg/ml). 
After 7 days, the adherent cells were used as human monocyte-
derived macrophages. On day 7, cells were treated with berberine 
in DMEM with 10% FBS for 24 h and then harvested or fixed for 
Oil-red-O staining.

Cholesterol measurement
Cells were washed with phosphate-buffered saline (PBS). The 

cellular lipids were obtained by sonicating the cells in hexane/
isopropanol (3/2, v/v) and extracting for 24 h. After removing cell 
debris by centrifuging at 12 000 g, the supernatant was dried under 
nitrogen flush and re-dissolved in isopropanol. Total cholesterol 
was determined with an Amplex Red Cholesterol Assay Kit (Invit-
rogen) [44]. The protein was determined by Lowry assay. 

Western blot
Cells were washed with ice-cold PBS, lysed directly in boiling 

1× Laemmli SDS buffer containing 20 mmol/l dithiolthretol and 
heated at 100 oC for 5 min. Samples were subjected to western blot 
[45, 46].

Real-time RT-PCR
Total RNA was prepared from cells with TRIzolTM reagent (In-

vitrogen). Total RNA (2 μg) was reverse-transcribed with oligo-dT 
primer. The cDNA samples were then diluted to appropriate con-
centration for real-time PCR analysis (Rotor-Gene 3000, Corbett 
Research Pty Ltd). Hypoxanthine-guanine phosphoribosyl trans-
ferase (HPRT) was used as a constitutive gene control. The target 
mRNA was normalized with HPRT in the same sample. The PCR 
primers are: PTEN (forward: 5'-CGG AAC TTG CAA TCC TCA 
GT-3'; reverse: 5'-AGG TTT CCT CTG GTC CTG GT-3'), SR-A 
(forward: 5'-TGG TCC ACC TGG TGC TCC-3'; reverse: 5'-ACC 
TCC AGG GAA GCC AAT TT-3'), aP2 (forward: 5'-AAA GAC 
AGC TCC TCC TCG AAG GTT-3'; reverse: 5'-TGA CCA AAT 
CCC CAT TTA CGC-3'), LPL (forward: 5'-GGC TCT GCC TGA 
GTT GTA G-3'; reverse: 5'-AGA AAT TTC GAA GGC CTG GT-
3'), HPRT (forward: 5'-CCT GCT GGA TTA CAT TAA AGC-3'; 

reverse: 5'-TTC AAC ACT TCG AGA GGT CCT-3').

DiO-Ac-LDL Uptake
DiO-Ac-LDL uptake was performed as described by Cao et 

al. [39]. RAW264.7 cells were treated with or without berberine 
for 48 h, incubated in DMEM with 2% lipoprotein-deficient FBS 
and 10 µg/ml DiO-Ac-LDL for 4 h at 37 °C, washed with PBS 
and analyzed by FACScan flow cytometer (BD Biosciences). For 
anti-SR-A or anti-CD36 antibody-blocking experiment, cells were 
pre-incubated with 10 μg/ml antibody in DMEM containing 2% 
lipoprotein-deficient FBS for 1 h at 37 °C. DiO-Ac-LDL was then 
added to the cells for uptake.

Cell surface receptor measurement
RAW264.7 cells were treated with 10 µM berberine or not for 

48 h, washed with ice-cold PBS containing 0.5% bovine serum al-
bumin, and incubated with anti-SR-A, anti-CD36 or isotype blank 
antibody for 1 h on ice. FITC-conjugated secondary antibody was 
used for flow cytometry analysis. 

SR-A gene promoter analysis
Human SR-A promoter fragment (−696 to +46, was kindly 

provided by Dr Christopher Glass, University of California, San 
Diego) in a luciferase reporter vector (pGL3-basic, Promega) was 
transfected into HEK 293T cells by Lipofectamine 2000 (Invit-
rogen). 24 h after transfection, cells were treated with berberine, 
LY294002 or both for additional 24 h. Luciferase reporter assay 
was carried out using the Dual-Luciferase Reporter Assay System 
(Promega) and the transfection efficiencies were normalized to 
Renilla luciferase activity. 

Statistical Analysis
Data were presented as mean ± SD. Differences were analyzed 

by Student’s t-test. P < 0.05 was considered statistically signifi-
cant.
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