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Dear Editor,

Histone lysine methylation has received a great deal 
of attention from the chromatin field over the past 10 
years. To date, histone lysine methylations have been 
demonstrated to play pivotal roles in nearly all biological 
processes involving chromatin, including replication, 
transcription, DNA repair etc. [1]. One major challenge 
in the field has been that of obtaining homogenously 
methylated histones, i.e., histones methylated at a 
specific lysine residue with a particular methyl status. 
Such histone materials could be of important use in 
many functional applications. In 2007, Shokat’s lab 
invented an easy, robust alkylating reaction (Shokat’s 
reaction) that chemically installs specific methyl-lysine 
analogues (MLAs) onto specific histone residues [2]. It 
is a very promising technology that may revolutionise 
our understanding of methylated histone lysine-mediated 
biological functions. However, Shokat’s reaction is yet 
to be widely adopted by biologists. Some researchers 
may worry about the compatibility of the “pseudo 
lysine” generated by Shokat’s reaction with subsequent 
biochemical assays. Shokat’s reaction product carries 
an N-methylated aminoethylcysteine (Kc or “pseudo 
lysine”), which replaces the γ-methylene with a sulphide, 
resulting in a slight lengthening of the side chain (0.28 
Å) and a small increase in acidity (−1.1 pKa unit) [2]. 
Here, we report a systematic evaluation of the products 
of Shokat’s reaction in various biochemical assays, using 
different classes of methylated histone-binding proteins, 
histone lysine methyltransferases (HKMTs) and histone 
demethylases.

Recognition of methylated histones by effector 
proteins (or “readers”) is critical for the biological 
function of histone methylation. Thus, it is important 
to test whether the artificially “methylated” histones 
generated by MLA technology can still be recognised by 
their concomitant methylated histone-binding proteins. 

In the initial report of MLA technology, HP1α displayed 
binding activity towards H3Kc9me2 (H3 with its amino 
acid No. 9 converted to N-dimethyl-aminoethylcysteine 
or “pseudo” dimethyl-lysine) [2]. We repeated this 
experiment with all four methyl statuses (me0/1/2/3). 
Indeed, HP1α bound “methylated” H3Kc9, but not its 
unmethylated form (Figure 1A, upper panel). Moreover, 
it preferentially bound the trimethyl and dimethyl forms 
(Figure 1A, upper panel), which is a characteristic 
feature of HP1’s interaction with native methylated 
H3K9. In a competition experiment, both H3K9me3 
and H3Kc9me3 peptides were capable of eluting HP1α 
protein bound by biotin-labelled H3Kc9me3 peptide at 
similar concentrations (Figure 1A, lower panel). 

We then tes ted other domains that recognise 
methylated histones. 53BP1, the mammalian homologue 
of the fission yeast protein Crb2, specifically binds 
methylated H4K20 through its tudor domain [3]. 
Interestingly, 53BP1 cannot bind H4K20me3 due to 
structural hindrance [3]. In our peptide pull-down assay, 
recombinant 53BP1 tudor domain recognised MLA-
generated H4Kc20me1 and H4Kc20me2, but not the 
trimethyl or unmethylated forms (Figure 1B, upper 
panel). In a competition experiment, a slightly higher 
concentration of H4Kc20me2 peptide was required to 
elute bound 53BP1 (Figure 1B, lower panel), suggesting 
that 53BP1 has slightly lower binding affinity towards 
H4Kc20me2 peptide compared with the authentic 
H4K20me2 peptide. Recently, G9a and GLP were 
demonstrated to bind methylated H3K9 through a new 
methylated histone recognition domain, ankyrin repeats 
[4]. We thus analysed the G9a ankyrin repeats in the 
peptide pull-down assay. H3Kc9me1 and H3Kc9me2 
were capable of being recognised by the recombinant 
G9a ankyrin repeats, but not by the trimethyl or 
unmethylated forms (Figure 1C, upper panel). This 
methyl status specificity is consistent with the previous 
report on native methylated peptides [4]. In addition, 
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G9a ankyrin repeats displayed comparable binding 
affinity towards H3K9me1 and H3Kc9me1 peptides in a 
competition experiment (Figure 1C, lower panel).

T h e a b o v e e x p e r i m e n t s d e m o n s t r a t e d t h e 
compatibility of MLA products with methylated histone-
binding proteins in binding assays that do not involve 

any enzymatic reaction. Therefore, we extended our 
evaluation of MLA products to enzymatic reactions that 
directly use methylated histones as substrates. In the 
initial report of MLA technology, the founding member 
of the HKMT family, Suv39h1, displayed comparable 
activity towards MLA-generated H3 tail peptide versus 
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Figure 1 MLA products are compatible with various biochemical reactions. (A-C) MLA products are compatible with methylat-
ed histone-binding proteins. Upper panels, peptide pull-down assays. Lower panels, competition assays. FT: 10% of total flow 
through. B: 100% of bound material eluted from the magnetic streptavidin beads. (A) Recombinant HP1 binds MLA products 
with correct methyl status specificity. (B) Recombinant 53BP1 tudor domain binds the MLA products with correct methyl sta-
tus specificity. (C) Recombinant G9a ankyrin repeats bind the MLA products with correct methyl status specificity. (D-H) MLA-
containing nucleosomes are compatible with various HKMTs. Bottom panels show the coomassie blue-stained membranes 
for nucleosome loading; middle panels are autoradiography results for the HKMT activity assay; upper panels are quantified 
data obtained by liquid scintillation counting, the standard deviations were obtained from three parallel experiments. (D) 
HYPB. (E) Pr-Set7. (F) Suv4-20h1. (G) Suv4-20h2. (H) Dot1L. (I-J) MLA products are compatible with histone demethylases. 
(I) MALDI-TOF mass spectrometry analysis of H3K27me3 peptide before (upper left panel) and after incubation with recom-
binant JMJD3 (upper right panel); MALDI-TOF mass spectrometry analysis of H3Kc27me3 peptide before (lower left panel) 
and after incubation with recombinant JMJD3 (lower right panel). (J) MALDI-TOF mass spectrometry analysis of H3K36me1 
peptide before (upper left panel) and after incubation with recombinant JHDM1a (upper right panel); MALDI-TOF mass spec-
trometry analysis of H3Kc36me1 peptide before (lower left panel) and after incubation with recombinant JHDM1a (lower right 
panel).

regular H3 tail peptide [2]. Here, we analysed four 
different SET domain-containing HKMTs and one non-
SET domain HKMT, Dot1L. Moreover, reconstituted 
nucleosomes were used as substrates instead of 
the histone tail peptides because many HKMTs are 
nucleosome-specific enzymes that do not react on histone 
peptides or core histones [1].

We first evaluated HYPB, an H3K36-specific HKMT. 
Recombinant HYPB SET domain displayed similar 
activity towards nucleosomes containing H3Kc36me0 
(Figure 1D, lane 2) and nucleosomes containing wild-
type H3 (Figure 1D, lane 1). This activity gradually 
declined when H3Kc36me1- and H3Kc36me2-containing 
nucleosomes were tested (Figure 1D, lanes 3-4), which is 
consistent with the fact that HYPB is a trimethylase [5, 6].

We then systematically analysed the three H4K20-
specific HKMTs, Pr-Set7 (also known as Set8), Suv4-
20h1 and Suv4-20h2. In all three cases, MLA products 
were able to serve as substrates for the methylation 
reaction (Figure 1E-1G). Pr-Set7 displayed minimal 
activity towards H4Kc20me1 (Figure 1E, lane 3), 
consistent with the fact that Pr-Set7 is a mono-methylase 
[1]. To our surprise, despite the requirement of Suv4-
20 family HKMTs for H4K20me3 in vivo [7], neither 
Suv4-20h1 nor Suv4-20h2 displayed detectable activity 
towards H4Kc20me2 (Figure 1F, lane 4; Figure 1G, 
lane 4). This is unlikely to be due to the MLA reaction, 
because both enzymes were capable of methylating 
H4Kc20me0/1 (Figure 1F, lanes 2-3; Figure 1G, lane 
2). This implies that additional factor(s) might exist that 
regulate the methyl status specificity of Suv4-20 family 
HKMTs, especially that of Suv4-20h2, because it is the 
main enzyme responsible for maintaining H4K20me3 
levels in vivo [7]. This is an intriguing hypothesis 
because, unlike the global distribution of H4K20me2 
and the Suv4-20 family HKMTs [7], H4K20me3 is 

specifically enriched at pericentric heterochromatin 
[1], which suggests a requirement for a methyl status 
regulatory mechanism. Notably, the methyl status 
specificity of certain HKMT complexes has been shown 
to be regulated by regulatory subunits [8]. It is also worth 
noting that Suv4-20h1 displayed robust activity towards 
H4Kc20me1 (Figure 1F, lane 3), unlike Suv4-20h2 (Fig-
ure 1G, lane 3). This implies that Suv4-20h1 may favour 
the H4K20me1 generated by Pr-Set7 as its substrate, 
whereas Suv4-20h2 may prefer to directly methylate 
unmethylated H4. Next, we tested Dot1L (the human 
homologue of yeast Dot1), which is the only known non-
SET domain HKMT that specifically methylates H3K79 
[1]. Once again, nucleosomes with MLAs could serve as 
substrates for Dot1L (Figure 1H).

In the previous section, we have shown the ability of 
HKMTs to add new methyl groups onto MLA products 
(Figures 1D-1H). Next, we assessed whether histone 
demethylases can remove the methyl groups from 
MLA products. JMJD3 is an H3K27-specific KDM that 
reacts with trimethylated substrate [9]. Incubation with 
recombinant JMJD3 effectively demethylated peptides 
containing H3K27me3 (Figure 1I, upper panel) as 
well as MLA-generated H3Kc27me3 (Figure 1I, lower 
panel). In addition, the H3K36-specific demethylase 
JHDM1a [10] effectively demethylated H3K36me1 
(Figure 1J, upper panel) and H3Kc36me1 peptides (Fig-
ure 1J, lower panel). Our results collectively indicate 
that MLA products can serve as substrates for histone 
demethylases.

We have thus systematically evaluated the biochemical 
reaction compatibility of MLA products in different 
systems, including methylated histone-binding assays, 
histone methyltransferase assays and demethylase assays. 
The products of Shokat’s reactions served as substrates 
for all the above biochemical reactions and retained 
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excellent substrate specificity in most cases, demonstrat-
ing their great potential as a powerful tool for histone 
lysine methylation studies. We hope that our results will 
encourage more researchers to incorporate Shokat’s 
reaction into their studies.
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