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The Arabidopsis homologs of CCR4-associated factor 1 
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Messenger RNA (mRNA) turnover in eukaryotic cells begins with shortening of the poly (A) tail at the 3′ end, a 
process called deadenylation. In yeast, the deadenylation reaction is predominantly mediated by CCR4 and CCR4-
associated factor 1 (CAF1), two components of the well-characterised protein complex named CCR4-NOT. We re-
port here that AtCAF1a and AtCAF1b, putative Arabidopsis homologs of the yeast CAF1 gene, partially complement 
the growth defect of the yeast caf1 mutant in the presence of caffeine or at high temperatures. The expression of At-
CAF1a and AtCAF1b is induced by multiple stress-related hormones and stimuli. Both AtCAF1a and AtCAF1b show 
deadenylation activity in vitro and point mutations in the predicted active sites disrupt this activity. T-DNA inser-
tion mutants disrupting the expression of AtCAF1a and/or AtCAF1b are defective in deadenylation of stress-related 
mRNAs, indicating that the two AtCAF1 proteins are involved in regulated mRNA deadenylation in vivo. Interest-
ingly, the single and double mutants of AtCAF1a and AtCAF1b show reduced expression of pathogenesis-related (PR) 
genes PR1 and PR2 and are more susceptible to Pseudomonas syringae pv tomato DC3000 (Pst DC3000) infection, 
whereas transgenic plants over-expressing AtCAF1a show elevated expression of PR1 and PR2 and increased resis-
tance to the same pathogen. Our results suggest roles of the AtCAF1 proteins in regulated mRNA deadenylation and 
defence responses to pathogen infections.
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Introduction

Proper regulation of gene expression is crucial for es-
sentially all biological processes [1]. Although gene ex-
pression could be regulated at different steps, controlled 
RNA decay is an essential process that allows rapid 
changes in a cell’s gene expression profile, especially in 
response to environmental signals. In both mammalian 
and yeast cells, messenger RNA (mRNA) degradation 
usually begins with the shortening of the poly (A) tail 

at the 3′ end of the mRNA (deadenylation) by a variety 
of deadenylases [2]. The deadenylated mRNA can then 
enter one of two decay pathways. In the first pathway, a 
complex consisting of the decapping enzymes DCP1 and 
DCP2 recognises the deadenylated mRNA and cleaves 
the 5′ cap, after which the XRN1 exoribonuclease hy-
drolyses the RNA body from its 5′ end. In the other path-
way, deadenylated mRNAs can be degraded from the 3′ 
end by the cytoplasmic exosome complex [2]. In both 
cases, however, deadenylation is the initial and probably 
the rate-limiting step of mRNA turnover. Accumulating 
evidence indicates that, at least in yeast, deadenylation 
represents a central control point of mRNA abundance 
[3]. 

Three enzyme complexes, CCR4-NOT [4], PAN2-
PAN3 [5, 6] and PARN [7-9], have been identified as 
mRNA deadenylases in eukaryotic cells. CCR4-associat-
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ed factor 1 (CAF1) is a subunit of the CCR4-NOT com-
plex, which is an evolutionarily conserved protein com-
plex. The CCR4-NOT complex is involved in the control 
of diverse aspects of transcription and mRNA metabo-
lism, including mRNA deadenylation and its subsequent 
degradation [4, 10]. In yeast, the complex consists of at 
least nine core subunits, including CCR4, CAF1, CAF40, 
CAF130, and five NOT proteins (NOT1-NOT5) [4, 11-
13]. It has been shown that the CCR4 and CAF1 proteins 
are associated physically with each other and serve as the 
major cytoplasmic deadenylases in yeast cells [14-16]. 
However, the biochemical and physiological functions of 
CAF1 proteins are not clearly established. CAF1 proteins 
belong to the DEDDh subgroup of the DEDD family of 
nucleases, which requires three aspartates (D), a gluta-
mate (E), and a nearby histidine for activity (DEDDh) 
[17, 18]. Although the yeast CAF1 shows deadenylase 
activity in vitro [17, 19], the role of this activity in vivo is 
unclear. Inactivation of the predicted key catalytic active 
sites of yeast CAF1 did not affect in vivo deadenylation 
function [20]. Although a caf1 deletion reduces the rate 
of in vivo poly (A) shortening [14, 17], over-expression 
of CCR4 can complement this defect [16]. These data 
support the notion that CCR4 is the principal deadenyl-
ase of the yeast CCR4-NOT complex, and a major role 
of CAF1 is to link CCR4 to the remainder of the CCR4-
NOT complex [12]. However, a recent comprehensive 
structure-function analysis provided evidence show-
ing that, in addition to its contact with CCR4, the yeast 
CAF1, like its animal counterparts, plays important roles 
in mRNA deadenylation [21]. 

The important role of CAF1 has also been exemplified 
by phenotypic analyses of loss-of-function mutants of 
CAF1 in yeast and animals. For example, yeast caf1 mu-
tants are hypersensitive to high temperature and caffeine 
[22, 23]. Mutant male mice that lack CAF1 function are 
sterile [24]. Loss-of-function of CAF1 in Caenorhabditis 
elegans causes early embryonic and larval lethality [25]. 

Relatively less is known about the biochemical and 
physiological roles of the CAF1 genes in plants. One in-
dication comes from the observation that over-expression 
of the pepper CAF1 gene in tomato plants confers abnor-
mal plant growth and altered pathogen resistance [26], 
suggesting roles for CAF1 in both plant development and 
defence responses. It was recently shown that an Arabi-
dopsis CAF1-like gene is rapidly induced after mechani-
cal wounding [27]. 

Here, we show that AtCAF1a and AtCAF1b, putative 
Arabidopsis homologs of the yeast CAF1 protein, exhibit 
deadenylation activity and act redundantly in regulated 
deadenylation of stress-responsive mRNAs. We also pro-
vide evidence showing that over-expression or reduced 

expression of AtCAF1a and AtCAF1b affects plant de-
fence responses to pathogen infection.

Results

Hormone- and stress-induced expression of AtCAF1a 
and AtCAF1b

AtCAF1a (At3g44260) and AtCAF1b (At5g22250), 
which encode putative Arabidopsis homologs of the 
yeast CAF1 protein, were identified as jasmonic acid 
(JA)-inducible genes in our microarray analyses using 
the Arabidopsis whole genome chip (Affymetrix) [28]. 
Further RNA gel blot analysis indicated that, in addition 
to JA, the expression of the two genes was also strongly 
and transiently induced by abscisic acid (ABA), 1-ami-
nocyclopropane-1-carboxylic acid (ACC, a precursor of 
ethylene), salicylic acid (SA), mechanical wounding, and 
pathogen (Pseudomonas syringae pv tomato DC3000 (Pst 
DC3000)) infection. As shown in Figure 1, the transcript 
levels of AtCAF1a and AtCAF1b peaked 15 min after 
these treatments and decreased rapidly thereafter. The 
quick and transient induction of AtCAF1a and AtCAF1b 
expression by these stress-related hormones and stimuli 
suggested that these two genes might be associated with 
plant responses to biotic or abiotic stresses.

Reverse transcription (RT)-PCR analyses indicated 
that both AtCAF1a and AtCAF1b were expressed 
throughout the wild-type plant organs, including roots, 
stems, leaves, flowers and siliques (Figure 2A). The 
highest expression level of the two AtCAF1 genes was 
found in leaves, followed by roots and siliques, with rela-
tively low expression in stems and flowers (Figure 2A). 

Figure 1 RNA gel blot analysis of AtCAF1a (A) and AtCAF1b (B) 
expression in response to different treatments. Two-week-old 
Col-0 plants were treated with 50 µM MeJA, 20 µM ABA, 50 µM 
ACC and 20 µM SA, wounded with a haemostat (Wound), or in-
fected with Pst DC3000 (Pathogen). Leaves were harvested for 
RNA extraction at the indicated times after treatment. Each lane 
was loaded with 20 µg of total RNA. Ethidium bromide staining 
of rRNA served as a loading control.
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The tissue-specific expression patterns of these genes 
were also investigated with transgenic plants express-
ing the glucuronidase (GUS) reporter under the control 
of the AtCAF1 promoters. GUS activities were detected 
in stems, leaves, floral parts and siliques (Figure 2B), 
confirming that the AtCAF1 genes are ubiquitously ex-
pressed in different organs.

AtCAF1 genes partially complement the phenotypes of 
the yeast caf1 mutant

Two of the most prominent phenotypes of the yeast 
caf1 mutants are their temperature and caffeine sensi-
tivities [22, 23]. To examine the functional properties of 
the AtCAF1 genes, the two genes were heterologously 
expressed in the yeast caf1 mutant strain KY803-c1. As 
shown in Figure 3, the constructs pYES2-AtCAF1a and 
pYES2-AtCAF1b partially restored colony formation of 
the caf1 mutant at 37 °C or on a YD plate containing 5 
mM caffeine, but the vector control could not restore col-
ony formation, indicating that AtCAF1a and AtCAF1b 

represent the Arabidopsis homologs of the yeast CAF1 
protein.

AtCAF1 proteins exhibit 3′-5′ exonuclease activity in vi-
tro

The high sequence similarity of AtCAF1 proteins to 
those from other eukaryotic organisms, and the conserva-
tion of the DEDDh amino acids required for deadenyl-
ation activity (Supplementary information, Figure S1), sug-
gested that they may function as deadenylases. To test the 
role of AtCAF1a in deadenylation, a recombinant His-At-
CAF1a fusion protein was expressed in Escherichia coli. 
The purified His-AtCAF1a fusion protein was incubated 
with poly (A) as described in Materials and Methods. 
Time-dependent shortening of the 5′-labelled poly (A) 
indicated that AtCAF1a is a functional 3′-5′ exonuclease 

Figure 2 Spatial expression patterns of the AtCAF1 genes. (A) 
Expression of the two AtCAF1 genes in different organs re-
vealed by RT-PCR analysis. Amplification of the ACTIN1 gene 
served as a control. (B) Promoter-driven GUS expression pat-
terns of the two AtCAF1 genes. Shown are GUS staining of 4-d-
old seedlings and organs from 40-d-old plants.
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Figure 3 Effects of heterologous expression of AtCAF1 genes 
on the growth of the yeast caf1 mutant. Yeast strains KY803 
and KY803-c1 with pYES2-AtCAF1a, pYES2-AtCAF1b or with 
pYES2 vector were grown on a YD plate at 28 °C, on a YD plate 
at 37 °C or on a YD plate with 5 mM caffeine. In each panel, 
from left to right, 20-fold fewer cells were plated in each column.
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Figure 4 Nuclease activities of AtCAF1 proteins. (A) AtCAF1a 
shows 3′-5′ exonuclease activity in vitro. (B) AtCAF1a-mt does 
not show exonuclease activity. (C) AtCAF1b shows exonuclease 
activity. For all panels, purified His-AtCAF1 fusion proteins were 
incubated with 5′-labelled poly (A) for the indicated time periods 
and the reaction mixtures were resolved on polyacrylamide gels.
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(Figure 4A). AtCAF1a-mt, which contains point muta-
tions in the conserved putative catalytic residues D47/A 
and E49/A, completely abolished the exonuclease activ-
ity (Figure 4B). These results showed that AtCAF1a is 

a functional deadenylase in vitro and that its conserved 
DEDDh domain is required for its enzymatic activity. 
Similar exonuclease activity was also observed with At-
CAF1b (Figure 4C).

Figure 5 Loss-of-function of AtCAF1a or AtCAF1b leads to defective mRNA deadenylation. (A) Schemes of T-DNA inser-
tion lines of each locus. Gray boxes indicate open reading frames (ORFs), and white boxes indicate untranslated regions 
(UTRs). Arrows indicate the relative positions of the primers used for RT-PCR analysis to check the expression of AtCAF1a 
or AtCAF1b in T-DNA insertion lines. Locus numbers, open reading frames, and T-DNA insertion sites are shown. (B) At-
CAF1a and AtCAF1b expression in wild type and atcaf1a/atcaf1b revealed by RT-PCR analysis. Total RNAs from 2-week-old 
seedlings of the indicated genotypes were used as a template. Amplification of the ACTIN1 gene serves as a control. (C) PAT 
assays measured the deadenylation of VSP1 mRNA. Two-week-old wild-type and atcaf1a seedlings were not treated (–) or 
were treated with 50 µM MeJA for 6 h (+). Plant tissues were then collected for RNA extraction at the indicated times (h) after 
MeJA treatment. atcaf1b and atcaf1a/atcaf1b mutants were only harvested 12 h after JA treatment. RNA gel blot analysis was 
performed to show the actual expression levels of VSP1. (D) PAT assays measured the deadenylation of CHIB mRNA. Two-
week-old wild-type and atcaf1a seedlings were not treated (–) or were treated with ACC for 24 h (+). Plant tissues were then 
collected for RNA extraction at the indicated times (h) after ACC treatment. atcaf1b and atcaf1a/atcaf1b mutants were only 
harvested 12 h after ACC treatment. RNA gel blot analysis was performed to show the actual expression levels of CHIB. (E) 
PAT assays measured the deadenylation of LOX2 mRNA. Two-week-old wild-type and atcaf1a seedlings were not wounded 
(–) or were wounded with a haemostat and incubated for 3 h (+) in a growth chamber. Plant tissues were then collected for 
RNA extraction at the indicated times (h). atcaf1b and atcaf1a/atcaf1b mutants were only harvested after 12 h. RNA gel blot 
analysis was performed to show the actual expression levels of LOX2. (F) Deadenylation of VSP1 mRNA in vivo is dependent 
on the deadenylase activity of AtCAF1a. Empty plasmid vector, wild-type AtCAF1 or AtCAF1a-mt was expressed in atcaf1a 
plants. Plants were harvested 12 h after a 6-h treatment with MeJA treatment. The deadenylation of the Arabidopsis ACTIN1 
gene, which is not induced by stress treatments, was used as a control in all of the PAT assays. The positions of DNA size 
markers (in bp) are indicated on the left.
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AtCAF1a and AtCAF1b are required for regulated mRNA 
deadenylation

To examine whether AtCAF1a plays a role in mRNA 
deadenylation in vivo, we determined whether atcaf1a, 
a T-DNA insertion mutant that disrupts the expression 
of AtCAF1a (Figure 5A and 5B), shows defective dead-
enylation activity. The finding that the expression of At-
CAF1a was transiently induced by JA prompted us to in-
vestigate whether the atcaf1a mutation affects the decay 
of the vegetative storage protein 1 (VSP1) mRNA, which 
is widely used as a JA-inducible marker gene in Arabi-
dopsis [29]. For this experiment, wild-type and atcaf1a 
plants were treated with methyl jasmonate (MeJA) for 6 
h and then transferred to MS media for the indicated time 
periods (Figure 5C). Thus, a pool of newly transcribed 
mRNAs was produced and a transcriptional pulse-chase 
experiment to access the time course of deadenylation 
was possible. Poly (A) tail length (PAT) assays indicated 
that, compared with that in wild type, the deadenylation 
rate of VSP1 mRNA was reduced in the atcaf1a mutant 
(Figure 5C). Similarly, the deadenylation rate of VSP1 
mRNA was also decreased in atcaf1b, a T-DNA insertion 
mutant that affects the expression of AtCAF1b (Figure 
5A-5C). Furthermore, the impaired deadenylation rate 
of VSP1 mRNA was more severe in the atcaf1a/atcaf1b 
double mutant than those in the single mutants or in wild 
type (Figure 5B and 5C). Consistent with their defective 
deadenylation activities, our RNA gel blot analysis indi-
cated that the actual accumulation levels of VSP1 mRNA 
in the single and double mutants were higher than those 
in wild type (Figure 5C). These results suggested that 
AtCAF1a and AtCAF1b act redundantly in VSP1 mRNA 
deadenylation. 

The single mutants, atcaf1a and atcaf1b, and the dou-
ble mutant were also compared with wild type for their 
deadenylation rates of the stress-related genes CHITIN-
ASE B (CHIB) and LIPOXYGENASE2 (LOX2). The eth-
ylene- and JA-responsive CHIB encodes a basic chitinase 
with antimicrobial properties [30, 31]. LOX2 encodes a 
key enzyme in the octadecanoid pathway leading to JA 
biosynthesis [32] and is extensively used as a marker for 
wound responses. Results from the PAT assays showed 
that the mutants also showed substantially reduced dead-
enylation rates of CHIB (Figure 5D) and LOX2 (Figure 
5E) mRNAs. In addition, RNA gel blot analyses indi-
cated that the defective deadenylation capacities in these 
mutants led to increased mRNA levels of CHIB and 
LOX2 (Figure 5D and 5E). These observations indicated 
that AtCAF1a and AtCAF1b are required for regulated 
deadenylation of a broad spectrum of stress-responsive 
mRNAs. In contrast, our parallel experiments indicated 
that AtCAF1a and AtCAF1b have little effect on the 

deadenylation of the Arabidopsis ACTIN1 gene (Figure 
5C-5E), which is usually not induced by stresses.

Deadenylase activity of AtCAF1a is crucial for regulated 
mRNA deadenylation in vivo

To determine whether the exonuclease activity of At-
CAF1a is required for deadenylation of VSP1 mRNA, 
we introduced AtCAF1a or AtCAF1a-mt, a mutant ver-
sion of AtCAF1a, into the atcaf1a mutant (Figure 6F 
and 6G). As described above, AtCAF1a-mt contains two 
missense substitutions that inactivate the deadenylase 
activity of AtCAF1a (Figure 4B). PAT assays indicated 
that AtCAF1a rescued the atcaf1a defect in VSP1 mRNA 
deadenylation, but the empty vector and AtCAF1a-mt did 
not rescue the defect (Figure 5F). Similarly, AtCAF1a 
also rescued the atcaf1a defect in mRNA deadenylation 
of CHIB and LOX2 (data not shown). These results pro-
vided evidence that the enzymatic activity of AtCAF1a is 
essential for regulated deadenylation of mRNAs in vivo.

Over- and under-expression of AtCAF1a or AtCAF1b af-
fect plant responses to pathogen infection

The expression of AtCAF1a and AtCAF1b was up-
regulated after infection by Pst DC3000 (Figure 1). In 
addition, the expression levels of AtCAF1a or AtCAF1b 
affected the deadenylation of several stress-responsive 
mRNAs. These two findings prompted us to investigate 
whether over- or under-expression of these genes result 
in altered responses of plants to pathogen infection. To 
this end, we generated transgenic plants showing in-
creased expression of AtCAF1a under the control of the 
CaMV 35S promoter (Figure 6A and 6B). The AtCAF1a 
over-expression line (all AtCAF1a over-expression lines 
showed similar results; thus, only data obtained with one 
line are shown below), together with the single and dou-
ble mutants of AtCAF1a and AtCAF1b, were compared 
with wild type for their responses to Pst DC3000 infec-
tion. Quantification of pathogen growth indicated that, 
while the AtCAF1a over-expression line showed signifi-
cantly increased resistance to Pst DC3000, the single and 
double mutants were more susceptible to this pathogen 
(Figure 6C).

In agreement with the performances of the different 
genotypes to pathogen infection, our RT-PCR and quan-
titative real-time PCR analyses indicated that, compared 
with wild-type plants, the AtCAF1a over-expression 
plants showed constitutively higher expression of the 
pathogenesis-related (PR) genes PR1 and PR2. In con-
trast, the single and double mutants of AtCAF1a and 
AtCAF1b showed reduced expression levels of PR1 and 
PR2 (Figure 6A and 6B). Given that both AtCAF1a and 
AtCAF1b show deadenylation activity, we tested whether 
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the two proteins act directly on the poly (A) tails of PR1 
and PR2 transcripts. Our PAT assays indicated that the 
poly (A) tail levels of PR1 and PR2 in AtCAF1a over-
expression lines were significantly higher than those in 
wild-type plants. In the double-mutant plants, however, 
the poly (A) tail levels of PR1 and PR2 mRNAs were 
much lower than those in wild-type and single-mutant 
plants (Figure 6D and 6E). These results are the op-
posite of what would be predicted if AtCAF1 proteins 
act directly on the deadenylation of PR1 and PR2. To-
gether, our data suggest that, even though AtCAF1a and 
AtCAF1b are functional deadenylases, they do not act 

directly on the poly (A) tails of PR1 and PR2.

Deadenylase activity of AtCAF1a is essential for the el-
evated expression of PR1 and PR2

To test whether the AtCAF1a enzymatic activity is 
required for PR1 and PR2 expression, we analysed the 
expression levels of PR1 and PR2 in atcaf1a mutants 
over-expressing AtCAF1a or the above-described AtCA-
F1a-mt. Both the wild type and the mutant version of 

AtCAF1a were expressed at nearly the same level in the 
atcaf1a mutant background (Figure 6F and 6G). Over-
expression of wild-type AtCAF1a increased the expres-

Figure 6 AtCAF1a and AtCAF1b affect plant response to Pst DC3000. (A) Steady-state expression levels of PR1 and PR2 
in the indicated genotypes revealed by RT-PCR assays. Amplification of the ACTIN1 gene serves as a control. (B) Steady-
state expression levels of PR1 and PR2 in the indicated genotypes measured by qRT-PCR assays. Transcript levels of PR1 
and PR2 were normalised to the expression of the ACTIN1 gene measured in the same RNA samples. Data are mean ± SD 
of three independent experiments. (C) Bacterial growth in wild-type, 35S::AtCAF1a, atcaf1a, atcaf1b, and atcaf1a/atcaf1b 
plants. The number of colony-forming units (CFU) per leaf disk was determined 0, 2, and 4 days after infiltration. Data are 
mean ± SD of three replicates. (D) Deadenylation of PR1 mRNA in the indicated genotypes as revealed by PAT assay. (E) 
Deadenylation of PR2 mRNA in the indicated genotypes as revealed by PAT assay. For (D) and (E), 2-week-old seedlings 
grown under normal conditions were used for RNA extraction. Deadenylation of the ACTIN1 gene in the same RNA samples 
served as a control. (F) Expression levels of PR1 and PR2 under normal conditions in the indicated genotypes revealed by 
RT-PCR assays. Amplification of the ACTIN1 gene served as a control. (G) Expression levels of PR1 and PR2 under normal 
conditions in the indicated genotypes as measured in qRT-PCR assays. Transcript levels of PR1 and PR2 were normalised to 
the expression of the ACTIN1 gene measured in the same RNA samples. Data are mean ± SD of three independent experi-
ments.
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sion levels of PR1 and PR2, but over-expression of the 
mutant did not (Figure 6F and 6G). These results indicate 
that the enzymatic activity of AtCAF1a is important for 
the elevated expression of PR1 and PR2.

Discussion

In yeast (Saccharomyces cerevisiae), the CAF1 pro-
tein functions as one of the nine components of the 
CCR4-NOT complex [4, 10]. Our sequence analysis and 
yeast two-hybrid assays revealed that the genome of Ara-
bidopsis contains homolog(s) for all of the major compo-
nents of the yeast CCR4-NOT complex except CAF130 
(data not shown). We demonstrate herein that several 
stress-related hormones and stress stimuli (mechanical 
wounding and pathogen infection) induce the expression 
of AtCAF1a and AtCAF1b, putative Arabidopsis homo-
logs of the yeast CAF1 gene (Figure 1). Both AtCAF1a 
and AtCAF1b partially complement the phenotypes of 
the yeast caf1 mutant and exhibit 3′-5′ exonuclease ac-
tivity in vitro (Figure 4), suggesting that they may act as 
functional deadenylases in vivo. We further explored the 
physiological significance of the deadenylation activi-
ties of the AtCAF1 proteins in mRNA degradation in 
vivo. Stress-related hormones and environmental stresses 
induce the expression of many defence-related mRNAs, 
and fulfilment of these signal transduction pathways re-
quires the removal of earlier products of gene expression. 
Although some of these events occur at the protein level, 
including the rapid proteolysis of the AUX/IAA proteins 
following auxin binding to the TIR1 F-box protein [33, 
34], some occur at the RNA level. It is well known that 
JA treatment leads to increased production and stabilisa-
tion of VSP1 mRNA [29]; recovery from JA treatment, 
however, results in deadenylation and decay of VSP1 
mRNA. Our data indicate that AtCAF1a and AtCAF1b 
redundantly function in regulating deadenylation of 
VSP1 and other stress-responsive mRNAs. Importantly, 
although the RNase activity is not required for the in vivo 
function of the yeast CAF1 protein [20], mutation in the 
putative catalytic residues of AtCAF1a, which abolishes 
its exonuclease activity in vitro, impairs the ability of 
mRNA deadenylation. These data support the hypothesis 
that the exonuclease activity of AtCAF1a is crucial for in 
vivo deadenylation of mRNAs.

Of interest is our findings that the expression of the At-
CAF1 genes was induced by ABA, ACC, SA, mechanical 
wounding, and pathogen infection, in addition to their in-
duction by MeJA (Figure 1). Induction of AtCAF1 genes 
by versatile stress-related hormones and stimuli suggests 
that AtCAF1a and AtCAF1b may play a general role in 
the deadenylation of a wide range of mRNAs, rather than 

specifically acting on a particular stress-response path-
way. It is reasonable to speculate that, whenever there is 
a sudden increase in mRNA production, AtCAF1 genes 
are induced at the transcriptional level and then perform 
their deadenylation role on mRNAs that need to be de-
graded.

Emerging evidence suggested important roles for 
plant CAF1 genes in defence responses against abiotic 
or biotic stresses. For example, over-expression of the 
pepper CAF1 gene (CaCAF1) in tomato plants resulted 
in enhanced resistance against the oomycete pathogen, 
Phytophthora infestans. In addition, multiple defence-
related genes, including PR1 and PR6, are constitutively 
up-regulated in these transgenic plants [26]. One of the 
Arabidopsis homologs of CAF1, named CAF1-like (At-
CAF1a in this study), was recently shown to be wound- 
and biotic stress-inducible in vivo using stable transgenic 
lines expressing transcriptional luciferase fusions [27]

In line with these observations, our results indicated 
that transgenic Arabidopsis plants over-expressing At-
CAF1a constitutively express higher levels of PR1 and 
PR2 and are more resistant than wild type to the infec-
tion of Pst DC3000. On the contrary, mutants of AtCAF1 
genes show reduced expression of PR1 and PR2 and are 
more susceptible to the same pathogen. These results 
raised the interesting question of how AtCAF1a affects 
the expression levels of PR1 and PR2. Significantly, our 
PAT assays (Figure 6D and 6E) and complementation ex-
periments (Figure 6F and 6G) indicate that, even though 
AtCAF1a does not act directly on the poly (A) tails of 
PR1 and PR2 mRNAs, its deadenylation activity is es-
sential for the maintenance of the elevated expression 
levels of PR1 and PR2 in transgenic plants over-express-
ing AtCAF1a. It is likely that AtCAF1a acts indirectly in 
controlling PR1 and PR2 expression levels. We speculate 
that AtCAF1 proteins are required for degradation of a 
particular mRNA species specifying a repressor of PR1 
and PR2 transcription. Wild-type plants, in which At-
CAF1 proteins partially degrade the repressor, exhibit an 
intermediate level of PR1 and PR2 expression and dis-
ease resistance. In plants that over-express the AtCAF1 
genes, the repressor is largely or completely degraded, 
conferring an enhanced defence response by production 
of higher levels of PR1 and PR2. In mutants that lack the 
deadenylase activity of AtCAF1 proteins, the repressor is 
more stable and interferes with PR1 and PR2 expression, 
consequently reducing pathogen resistance. Support of 
this hypothesis comes from the characterisation of the 
Arabidopsis CER7 (WAX-DEFICIENT ECERIFERUM 
7) protein, which is a putative 3′-5′ exoribonuclease ho-
mologous to yeast Ribonuclease PH45 (RRP45p), a core 
subunit of the RNA processing and degrading exosome 
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[35]. CER7 regulates cuticular wax biosynthesis, prob-
ably by degrading a specific mRNA species that encodes 
a negative regulator of the transcription of CER3/WAX2/
YRE, a key wax biosynthetic gene [35]. Further studies 
are required to elucidate the detailed mechanisms of how 
AtCAF1 proteins affect the expression of PR1/2 and per-
haps other defence-related genes.

Disruption of genes encoding AtCAF1a or/and At-
CAF1b causes no apparent developmental phenotype. 
This is likely because of a redundancy in mRNA dead-
enylation systems in Arabidopsis. AtPARN, homolog of 
the important deadenylase PARN in mammalian cells, 
has deadenylation activity on some embryo-specific 
transcripts [8]. Furthermore, the genome of Arabidopsis 
also encodes a putative homolog of yeast PAN2 protein. 
These two deadenylases might compensate for the At-
CAF1a and AtCAF1b defects of the mutants.

Materials and Methods

Oligonucleotides used in this study
All oligonucleotides used in this study are listed in Supple-

mentary information, Table S1. Restriction enzyme sites and point 
mutation sequences are underlined.

Plant growth conditions
All Arabidopsis lines used were in the Columbia (Col-0) back-

ground. Arabidopsis seeds were surface sterilised with 10% (v/v) 
bleach for 10 min and washed five times with sterile water. Ster-
ilised seeds were then suspended in 0.1% agarose and plated on 
Murashige and Skoog media. Plants were vernalised in darkness 
for 3 d at 4 °C and then transferred to a phytotrone set at 22 °C 
with a 16-h light/8-h dark cycle. After 2-3 weeks, seedlings were 
also potted in soil and placed in a growth room at 22 °C with a 
16-h light/8-h dark cycle.

Mutant identification and generation of transgenic plants
Arabidopsis mutants atcaf1a (SALK_070336) and atcaf1b 

(SALK_092761) were obtained from the Arabidopsis Biological 
Resource Center (ABRC). Homozygous T-DNA insertion lines 
for atcaf1a and atcaf1b were identified with diagnostic PCR using 
gene-specific primers and T-DNA primers (Supplementary infor-
mation, Table S1). Disruption of target gene expression in these 
mutants was verified by RT-PCR (Figure 5B). Mutant atcaf1a and 
atcaf1b lines were crossed, and an atcaf1a/atcaf1b double-mutant 
line was identified from the resulting F2 population by PCR-based 
genotyping. 

The coding sequence of AtCAF1a was amplified by PCR using 
the primer pairs as indicated in Supplementary information, Table 
S1. The resulting fragments were cloned into the BamHI and SacI 
sites of the binary vector pCanG-HA under the control of the 35S 
promoter to generate the 35S::AtCAF1a construct. Similarly, we 
also generated a 35S::AtCAF1a-mt construct. Plant transformation 
was done with the vacuum infiltration method [36].

Plant treatments and bacterial infection
All hormones were purchased from Sigma (St Louis, MO). For 

hormone treatments, 2-week-old seedlings grown on MS media 
were treated with 50 µM MeJA, 20 µM ABA, 50 µM ACC, or 
20 µM SA. For the wounding treatment, leaves of 2-week-old 
plants were crushed two times across the apical lamina with a 
haemostat. Plants were incubated for various periods, after which 
tissues were harvested for RNA extraction.

Soil-grown plants that were 4-week old were infected with Pst 
DC3000. Bacteria were applied in a density of 104 CFU/ml with a 
needleless syringe in the middle of a leaf, and leaf discs were cut 0, 
2, and 4 d after infection. Leaf discs were cut with a cork borer and 
immediately homogenised with sterile water. Appropriate dilutions 
were plated on Kings B plates with 50 µg/ml rifampicin and incu-
bated for 48 h at 28 °C.

Gene expression analyses
Total RNA was isolated from 14-d-old seedlings grown on 

MS media using a guanidine thiocyanate extraction method. Total 
RNA (20 µg) was separated by electrophoresis on a 1% MOPS-
agarose gel containing 5.8% formaldehyde, and RNA gel blot 
analysis was performed as described previously [28]. For RT-PCR, 
5 µg of total RNA was used for first-strand cDNA synthesis by 
M-MLV (Promega). PCR conditions were as follows: 3 min at 
94 °C, followed by 30 cycles of 30 s at 94 °C; 30 s at 55 °C; and 1 
min at 72 °C. Quantitative real-time RT-PCR (qRT-PCR) analyses 
were performed using the QuantiTec SYBR green system (Qiagen) 
and the Opticon PCR machine (MJ Research, Waltham, MA). Data 
were treated using the Opticon Monitor 3 software provided by the 
manufacturer. Gene-specific primers used for RT-PCR and qRT-
PCR assays are listed in Supplementary information, Table S1.

To express GUS under the control of Arabidopsis native pro-
moters, 2628-bp and 1456-bp regions of 5′ upstream sequences 
of AtCAF1a and AtCAF1b, respectively, were amplified from the 
relevant genomic regions. These promoter fragments were fused to 
a GUS coding sequence and transformed into wild-type Arabidop-
sis plants. Histochemical staining for GUS activity in transgenic 
plants was performed as described previously [37]. 

Site-directed mutagenesis of AtCAF1a
Point mutations of AtCAF1a were done with the MutantBEST 

Kit (TaKaRa) according to the manufacturer’s instructions.

Yeast complementation
Yeast strains KY803 (MATa leu2-PET56 trp1-∆1 ura3-52 gal2 

gcn4-∆1) and KY803-c1 (MATa leu2-PET56 trp1-∆1 ura3-52 gal2 
gcn4-∆1 caf1::LEU2) were kindly provided by Clyde L. Denis. 
Yeast strains were grown on YEP medium (1% yeast extract, 2% 
Bacto peptone) supplemented with 2% glucose. YD plates consist-
ed of YEP media supplemented with 2% glucose and 2% agar. The 
open reading frames (ORFs) of AtCAF1 genes were cloned into 
pYES2, and yeast complementation studies were done according 
to Ohn et al. [21].

Nuclease assay
For the expression of AtCAF1 proteins as fusions with the His 

tag, the open reading frames of AtCAF1 genes were cloned into 
pET-28a (+) (Novagen). Expression of His-AtCAF1 fusions was 
carried out in BL21 (DE3) host strains, and purification was done 
with Ni-NPA according to the manufacturer’s instructions (Nova-
gen). In vitro RNase assays were performed in 20 mM Tris/Cl (pH 
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7.0), 150 mM NaCl, 2 mM MgCl2, 5 U RNasin (Promega), 1 mM 
poly (A) substrate (Amersham) labelled with 32P at the 5′ end, and 
0.1 µg of purified His-AtCAF1 fusion proteins. A volume of 10 µl 
of the reaction mixture was incubated at 25 °C for the indicated 
time. Reactions were stopped by the addition of formamide/EDTA 
buffer and then loaded onto 7 M urea/10% acrylamide (19:1) gels 
[19].

PAT assay
For PAT assays, 2-week-old plants were treated with 50 µM 

MeJA for 6 h, 50 µM ACC for 24 h, or wounded with a haemostat 
and incubated for 3 h, after which plant tissues were harvested at 
various times for RNA extraction. PAT assays were carried out 
according to the method of Sallés et al. [38] with minor modifica-
tions. Briefly, 2 µg of total RNA was used for RT with an anchor-
ing nucleotide-fused oligo (dT)15 primer. PCR was performed with 
the anchor primer and a sense primer VSP1-mF (CHIB-mF/LOX2-
mF) targeting a specific sequence in the cDNA of interest. PCR 
cycles were as follows: 3 min at 94 °C, followed by 25 cycles of 
30 s at 94 °C; 30 s at 60 °C; 1 min at 72 °C. The PCR products 
were resolved on 2% agarose gels and subjected to Southern blot 
analysis.
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