

Driven maturation of embryonic stem cell-derived cardiomyocytes confers post-transplantation safety

Ji-Dong Fu^{1, 2, *}, Hung-fat Tse^{3, *}, Chung-Wah Siu^{1, 2, 3, *}, Jennifer C Moore^{1, 2}, Deborah K Lieu^{1, 2}, Song-Yan Liao³, Wing-Hon Lai³, Valeriy Timofeyez⁴, Ning Li⁴, Nipavan Chiamvimonvat⁴, Ronald A Li^{1, 2, 3, 4, 5}

¹Stem Cell Program and ²Department of Cell Biology and Human Anatomy, University of California, Davis, CA; ³Division of Cardiology, Department of Medicine, University of Hong Kong, China; ⁴Department of Internal Medicine, University of California, Davis, CA; ⁵Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children of North America, Sacramento, CA, USA

While self-renewable, pluripotent human (h) embryonic stem cells (ESCs) can provide an unlimited source of donor cardiomyocytes (CMs) for myocardial repair, we showed in a preclinical large (porcine) animal transplantation model that their cardiac derivatives with immature properties are prime substrates for lethal cardiac arrhythmias. To address this, we developed an approach for driven maturation of hESC-derived CMs (hESCCMs) that renders the cellular electrophysiological phenotype adult-like and thus completely ablates post-transplantation ventricular tachycardias (VT)/fibrillation (VF).

Keywords: human embryonic stem cells, cardiomyocytes, maturation, electrophysiology, arrhythmogenicity *Cell Research* (2008) **18**:s132. doi: 10.1038/cr.2008.222; published online 4 August 2008

^{*}These three authors contributed equally to this work. Correspondence: Ronald Li

E-mail: ronaldli@ucdavis.edu