Poster Session 1

npg

Improvement of cognitive functions attributed to the implantation of donor bone marrow-derived primary cd45⁻ cd11b⁻ cells to ischemic hippocampus in a mouse stroke model

Gang Lu^{1, 2}, Kam Sze Tsang^{3, 4}, Shu Pan Fong³, Yuan Yuan Li², Xian Lun Zhu¹, Ho Keung Ng^{3, 4}, Wai Sang Poon^{1, 4}

¹Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, ²Brain Research Laboratory, Biomedical Engineering Research Centre, Kunming Medical College, ³Brain Disease Laboratory, Department of Anatomical & Cellular Pathology, The Chinese University of Hong Kong, and ⁴Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, China.

Transplantation of bone marrow-derived mesenchymal stem cells in animal models of traumatic brain injury and ischemic stroke has demonstrated improvements of motor functions; however the beneficial effects on cognition were not fully elucidated. We stereotactically transplanted bone marrow-derived primary GFP⁺CD45⁻CD11b⁻cells into the cerebral ventricle of mice 24 h after induction of ischemic stroke. Cognitive functions in terms of spatial learning and memory ability were assessed using a watermaze system. Brain sections of mice sacrificed four weeks post-transplant were examined for migration, homing and differentiation of transplanted cells at different time intervals up to four months. Ischemic mice displayed a significant improvement of cognitive functions in terms of the shortened time latency in the watermaze at four weeks post-transplant. GFP⁺ cells were noted to migrate along nerve fiber tracts to the CA1 region of the lesion hippocampus evident of cell death, and differentiate into neurons at 15 weeks post-transplant. Preliminary data of the study suggest that improvement of cognitive functions shortly post-transplant might be attributable a chaperone effect of fiber-guided and targeted migration of donor bone marrow-derived primary stem cells to nourish auto-regeneration in lieu of differentiation into functional neurons to replace the dead counter-parts.

Keywords: mesenchymal stem cells, brain ischemia, migration, differentiation *Cell Research* (2008) **18**:s63. doi: 10.1038/cr.2008.153; published online 4 August 2008

Correspondence: Wai Sang Poon E-mail: wpoon@surgery.cuhk.edu.hk