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Potassium (K+) is an essential macronutrient for all living 
organisms and large amounts are required for plant growth 
and development. In many regions of Asia K+-fertilization 
has been neglected and soils have become K+-depleted. K+-
deficiency in the field diminishes not only crop production 
but also leads to environmental problems due to inefficient 
usage and leaching of nitrate. Consequences of K+-defi-
ciency on crop production range from decreased biomass, 
nutritional quality and taste of the crops to inferior harvest 
and storage properties, as well as increased susceptibility 
to disease. Effects of K+-deficiency on plant physiology in-
clude decreased photosynthetic rate, impaired tissue alloca-
tion of sugars and amino acids, decreased protein synthesis, 
and lack of control over turgor and gas exchange [1]. K+-
uptake and its re-distribution within the plant is facilitated 
by a plethora of membrane transport proteins displaying 
an astonishing diversity with respect to their affinity and 
selectivity for K+, mode and direction of transport, tissue 
specific expression, membrane localization and regulation 
[2]. Microarray experiments have shown that – in contrast 
to transporters of other macronutrients – genes encoding 
K+-transporters display surprisingly little responsiveness to 
the external nutrient supply [3]. This observation probably 
reflects that because of its vital role in maintenance of cell 
turgor and membrane potential K+-transport has to respond 
very quickly to changes in the environment. Hence, post-
translational control mechanisms are required. 

Two recent studies have provided exciting new infor-
mation on this issue. Wu and colleagues [4] and Luan 
and colleagues [5] identified a calcineurin B-like protein 
(CBL)-interacting protein kinase CIPK23 and two upstream 
elements, CBL1 and CBL9, as regulators of AKT1. AKT1 

is a Shaker-type voltage-gated ion channel that mediates 
the uptake of K+ at hyperpolarized membrane voltages [2]. 
The importance of AKT1 for K+-uptake from the root en-
vironment had previously been proven in Arabidopsis akt1 
knock-out mutants, which show impaired growth in low 
external K+-concentrations, when high-affinity K+-trans-
porters are inhibited by ammonium [6]. The CIPK/CBL 
regulatory system links K+-uptake to cytoplasmic Ca2+, the 
most important secondary messenger in plants, and is thus 
reminiscent of the SOS signalling pathway, which controls 
cellular Na+-homeostasis [2]. 

The paper by Pandey et al. in a recent issue of Cell Re-
search [7] identifies another member of the CIPK family, 
CIPK9, as playing an important role in plant adaptation 
to K+-deficiency. The authors report that two independent 
Arabidopsis T-DNA insertion knock-out lines for CIPK9 
show impaired growth under conditions of low K+-supply. 
The response is specific for K+ as the phenotype is caused 
by depletion of the growth medium for K+ but not for 
other ions. However, in contrast to the phenotype caused 
by knock-out of CIPK23, root and shoot total tissue K+-
contents were unchanged in cipk9 mutants compared to 
wildtype. 

The study raises the question which processes other 
than K+ acquisition are important for plant growth in K+-
deficient conditions. One possibility is that CIPK9, as 
CIPK23, interacts with a K+-channel, but that unlike AKT1 
this channel does not reside in the root plasma membrane. 
Experiments with K+-selective microelectrodes have 
shown that under varying extracellular K+-concentrations 
cytoplasmic K+-concentrations in root cells are maintained 
at a constant level at the cost of vacuolar K+ [8]. Thus, the 
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vacuolar K+-pool is used as a flexible store for cellular 
K+-homeostasis. Several K+-permeable channels in the 
tonoplast could facilitate K+ release from the vacuole un-
der K+-deficient conditions [2] but the question how these 
channels ‘sense’ the external K+-concentrations has long 
puzzled researchers in the field. The possibility that CIPK9 
directly regulates a vacuolar K+-channel thereby linking 
channel gating to external K+ via a cytoplasmic Ca2+ signal 
is therefore intriguing. K+-homeostasis operates not only 
at the cellular level but also at the tissue level. This is ap-
parent in the fact that K+-deficiency symptoms appear first 
in older leaves. Effective re-location of K+ from older into 
younger leaves requires regulation of plasma membrane 
and tonoplast K+-transporters in a number of different cell 
types, and CIPK9 could be an essential component of this 
regulatory network. 

Another possibility is that CIPK9 regulation targets 
aspects of plant adaptation to low K+ that are not linked 
to K+-transport. Although cellular and tissue K+-homeo-
stasis can protect metabolically active cells from serious 
K+-deficiency for a limited period of time, it is clear that a 
plant that experiences long-term K+-deficiency will have 
to re-prioritise its growth, development and metabolism to 
achieve maximal seed production with limited resources. 
Research in our lab has identified jasmonic acid (JA) as a 
potential central integrator of the adaptation process [9]. 
Microarray analysis showed that a large percentage of the 

K+-responsive transcriptome is related to JA, and a rise of 
JA during K+-deficiency, as well as the specificity of this 
response for K+-deficiency, have since been confirmed [A 
Amtmann, P Armengaud, unpublished data]. JA is well 
known to play a role in growth inhibition, senescence and 
stomatal closure; processes that are crucial for plant adapta-
tion to K+-deficiency. Our microarray study also identified 
CIPK9 as being transcriptionally regulated by K+, and 
subsequent profiling of the K+-responsive transcriptome 
in JA-signalling mutants showed that CIPK9 regulation 
is independent of JA-signalling. In the light of these find-
ings it is exciting that Pandey et al. [7] report enhanced 
expression of CIPK9 after wounding, another well-known 
stimulus for JA biosynthesis. CIPK9 could therefore be an 
essential upstream component of JA-mediated adaptive 
responses to K+-deficiency. 

A number of experiments are now required to further 
characterize the physiological role of CIPK9. Yeast two-
hybrid assays should be carried out to identify both up-
stream (e.g. CBLs) and downstream (e.g. K+-transporters) 
interactors of CIPK9. To test the possibility that CIPK9 is 
involved in more general aspects of plant adaptation to low 
K+ cipk9 mutants should be subjected to microarray analy-
sis and the transcriptional profile compared with available 
data from wildtype plants. To position CIPK9 within the 
K+-signalling network, dependence of its transcriptional 
K+-responsiveness to a putative ROS-upstream signal [10], 

Figure 1 Putative functions of CBL/CIPK pathways in K+-signalling. Through its effect on plasma membrane K+- and H+-conduc-
tance a decrease in external K+ leads to membrane hyperpolarisation and subsequent activation of voltage-dependent Ca2+-channels. 
Calcineurin B-like sensor proteins (CBLs) detect the rise in cytoplasmic Ca2+ and activate CBL-interacting protein kinases (CIPKs). 
Possible targets of CIPK regulation are plasma membrane K+-channels facilitating K+-uptake from the external medium, tonoplast 
K+-channels mediating K+-release from the vacuole, and upstream elements of hormonal pathways integrating a range of physi-
ological adaptations.
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and its requirement for a JA-downstream signal should be 
evaluated. 

The recent discovery of the CIPK/CBL regulatory sys-
tem has made a major contribution to our knowledge of 
how plants perceive external K+ (Figure 1), a question that 
has occupied researchers for some 50 years. Future studies 
should aim to explore the function of this system in a whole-
plant context, thus enhancing systemic understanding of 
a phenomenon that is not only of great scientific interest 
but also of central importance for sustainable agriculture 
worldwide. 
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