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Leaf morphogenesis requires the establishment of adaxial-abaxial polarity after primordium initiation from the shoot 
apical meristem (SAM). Several families of transcription factors are known to play critical roles in promoting adaxial or 
abaxial leaf fate. Recently, post-transcriptional gene silencing pathways have been shown to regulate the establishment 
of leaf polarity, providing novel and exciting insights into leaf development. For example, microRNAs (miR165/166) 
and a trans-acting siRNA (TAS3-derived tasiR-ARF) have been shown to repress the expression of several key transcrip-
tion factor genes. In addition, yet another level of regulation, post-translational regulation, has been revealed recently by 
studies on the role of the 26S proteasome in leaf polarity. Although our understanding regarding the molecular mecha-
nisms underlying establishment of adaxial-abaxial polarity has greatly improved, there is still much that remains elusive. 
This review aims to discuss recent progress, as well as the remaining questions, regarding the molecular mechanisms 
underlying leaf polarity formation.
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Introduction

Leaves derive from primordia, which form in peripheral 
zone of the shoot apical meristem (SAM). After emerg-
ing from the SAM flanks, the leaf primordia establish 
the polarity along three major axes: the adaxial-abaxial, 
proximodistal, and mediolateral axes. Among these three 
axes, the adaxial-abaxial axis is of primary importance 
for the subsequent asymmetric growth of the leaf and 
lamina expansion [1, 2]. In Arabidopsis, several leaf 
characteristics define the normal adaxial-abaxial polarity. 
Firstly, epidermal pavement cells of the adaxial surface 
are relatively large and of uniform size, whereas the cells 

of the abaxial side are smaller and of non-uniform size. 
Secondly, mesophyll cells between the two epidermal cell 
layers constitute two distinct parts, the closely arranged 
adaxial palisade mesophyll cells and the less closely placed 
abaxial spongy mesophyll cells. Thirdly, the trichome 
density differs between the two surfaces, with a higher 
adaxial trichome density on early juvenile leaves. Finally, 
vascular structures of the leaf show anatomically distinct 
xylem and phloem distributions, with adaxial xylems and 
abaxial phloems. 

In the 1950s, a series of surgical experiments carried 
out by Sussex established a conceptual framework for a 
hypothetical signal, now called the Sussex signal, which 
moves from the SAM to neighboring leaf anlagen to trigger 
adaxial leaf specification. Young leaf anlagen that had been 
surgically isolated from the SAM developed into radially 
symmetric structures, lacking adaxial differentiation [3, 
4]. More recently, experiments using a more sophisticated 
laser ablation method strongly supported the existence of 
the Sussex signal, as destruction of the L1 cells between 
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the SAM and the young anlagen also resulted in radially 
symmetric leaves [5].

Recent studies on leaf morphogenesis have led to sig-
nificant progress toward understanding the genetic and 
molecular regulation of leaf polarity establishment. To 
date, five groups of transcription factors, two types of 
small RNAs and the 26S proteasome protein degradation 
machinery have been shown to modulate establishment of 
adaxial-abaxial polarity. Identification of these important 
regulatory components indicates that at least three levels 
of regulation help establish normal leaf polarity: tran-
scriptional, post-transcriptional and post-translational. In 
this review, we describe recent progress in understanding 
formation of the leaf adaxial-abaxial axis, focusing on the 
model plant Arabidopsis, and discuss questions for future 
studies in this field. 

Roles of putative transcription factors in leaf adaxial-
abaxial patterning

A growing number of transcription factors have been 
shown to participate in the formation of leaf adaxial-abaxial 
polarity. These factors can be grouped into five functional 
categories. 

Genes in the class III HD-ZIP family
Genes in the class III HD-ZIP family encode proteins 

containing a homeodomain (HD), a leucine zipper motif 
(ZIP) and a sterol/lipid-binding domain (START domain). 
Three members in this family, PHABULOSA (PHB), 
PHAVOLUTA (PHV) and REVOLUTA (REV), play roles 
in promoting leaf adaxial fate [6]. PHB/PHV/REV are 
expressed in the central region of the SAM and the entire 
young leaf primordia before the P2 stage, but their tran-
scripts become adaxially localized in leaf primordia in and 
after this stage [7-9]. Dominant phb, phv and rev alleles 
lead to adaxialized trumpet- or rod-like leaves [2, 7, 9-12]. 
Although plants carrying a recessive mutation in one of 
these three genes do not result in leaf defects in adaxial-
abaxial patterning, plants lacking functional copies of all 
three genes exhibit a dramatic phenotype, with an abaxial-
ized, needle-like cotyledon distal to the hypocotyl [9, 13]. 
Since the PHB, PHV and REV proteins are predicted to 
possess a putative sterol/lipid-binding START domain, it 
was proposed that PHB/PHV/REV might act as receptors 
for a SAM-derived sterol/lipid ligand to initiate adaxial 
leaf differentiation [7]. Unfortunately, such a ligand has not 
yet been identified. In addition to the potential sterol/lipid 
binding function, a portion of the START domain-encod-
ing sequence is complementary to that of two miRNAs, 
miR165 and miR166. These two miRNAs have been found 
to negatively regulate START-domain proteins by mediat-

ing transcript cleavage and degradation (see below).

ASYMMETRIC LEAVES1 and 2 (AS1 and AS2)
AS1 encodes a putative R2-R3 MYB domain transcrip-

tion factor [14, 15], while AS2 encodes a LATERAL OR-
GAN BOUNDARIES (LOB) domain protein containing 
a leucine-zipper motif [16-18]. AS1 and AS2 are able to 
bind to each other to form a complex [19], and may thus 
regulate the same downstream targets in leaf develop-
ment. Consistent with this prediction, as1 and as2 mutants 
have similar leaf phenotypes. AS1 transcripts have been 
detected throughout leaf primordia but not in the SAM 
[14]. In contrast, AS2 transcripts have been detected in the 
adaxial side of cotyledons of embryo and may subsequently 
accumulate in the adaxial side of leaves [18]. Thus, the 
AS1-AS2 protein complex may form and function within 
the adaxial leaf domain. In the Arabidopsis Landsberg 
erecta accession, the first pair of rosette leaves in as1 and 
as2 mutants sometimes have petioles growing underneath 
the lamina, forming a lotus-leaf structure, which indicates 
a defective adaxial-abaxial polarity. However, this leaf 
phenotype is sensitive to genetic backgrounds and growth 
conditions [19, 20]. Interestingly, plants over-expressing 
AS2, either in 35S::AS2 transgenic lines or in the gain-of-
function as2 mutant iso-2d, exhibit adaxialized leaves [16, 
19, 21], whereas over-expression of AS1 does not perturb 
adaxial-abaxial polarity [15, 19, 22]. This observation sug-
gests that the dose of the normally spatially restricted AS2 
may be critical in determining the activity of the AS1-AS2 
complex, and the role of AS1 in leaf polarity formation is 
largely dependent on its interaction with AS2. 

AS1 orthologs have been found in a variety of plant spe-
cies such as Antirrhinum [1, 23], maize [24, 25], tobacco 
[26], tomato [27] and pea [28]. The Antirrhinum AS1 
ortholog, PHANTASTICA (PHAN), was the first adaxial-
abaxial polarity gene identified from the plant kingdom 
[1, 23]. Notably, in the eudicot species listed above, loss 
of function in the AS1 orthologs leads to more severe ad-
axial-abaxial abnormalities than those in Arabidopsis, but 
the reason is unclear. 

KANADI1 (KAN1), 2, and 3
KAN1, 2, and 3 encode putative GARP family transcrip-

tion factors. These three genes are expressed in a domain 
complementary to that of PHB/PHV/REV in multiple tis-
sues [9, 29-32]. Although kan1 and kan2 single mutant 
phenotypes are mild, kan1 kan2 double mutants displayed 
adaxialized leaves with outgrowths appearing on the ab-
axial leaf surface [30]. Interestingly, kan1 kan2 kan3 triple 
mutant showed even stronger phenotypes than kan1 kan2 
double mutant, indicating a redundant function(s) among 
these three proteins [33]. The abaxial outgrowths were 
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proposed to be caused by the appearance of ectopic adaxial 
cell patches on the abaxial leaf surface, leading to juxtaposi-
tion of adaxial and abaxial cells on the same leaf surface. 
These ectopic juxtapositions then proliferate and give rise 
to outgrowths [33]. Although the molecular mechanism of 
mutual suppression between KAN1/2 and REV/PHB/PHV 
is not known, the complementary expression patterns of 
these two groups of genes might be very important in leaf 
adaxial-abaxial polarity establishment [9, 32].

AUXIN RESPONSE FACTOR3 and 4 (ARF3 and ARF4)
ARF is a plant-specific transcription factor family 

comprised of 23 members in Arabidopsis (for a review, 
see [34]). Functions of ARF3 (also known as ETTIN) and 
ARF4 in controlling leaf polarity were first revealed by the 
ability of arf3 and arf4 mutations to suppress the effect of 
KAN1 over-expression [35]. In addition, arf3 arf4 double 
mutants resemble kan1 kan2 mutants, with adaxialized 
leaves and abaxial outgrowths, indicating that ARF3 and 
ARF4 are required for specifying leaf abaxial identity [35]. 
ARF4 is expressed in the abaxial leaf domain, while high 
levels of ARF3 are found in leaf anlagen, leaf margins, and 
in vascular bundles of older leaf primordia [35]. ARF3/4 
transcripts are targets of a TAS3-derived trans-acting short 
interfering RNA, tasiR-ARF [36], which guides the cleav-
age of ARF3/4 mRNAs (see below).

FILAMENTOUS FLOWER (FIL) and YABBY3 (YAB3)
FIL and YAB3 belong to the YABBY transcription factor 

family, and contain a conserved zinc-finger domain and an 
HMG-like YAB domain [37, 38]. FIL and YAB3 are both 
expressed in the abaxial leaf domain [38]. Both fil and yab3 
single mutants produce normal leaves, whereas fil yab3 
double mutants have narrow leaf laminae [38, 39]. Over-ex-
pression of FIL resulted in patches of ectopic abaxial cells 
on the adaxial leaf surface, indicating that FIL promotes 
abaxial cell fate [38]. In addition to the abaxial-promot-
ing function, these YAB genes may also be involved in the 
outgrowths observed in kan1 kan2 double-mutant leaves, 
as these outgrowths were accompanied by increased FIL 
expression [33].

Recent characterization of the Antirrhinum YAB gene 
GRAMINIFOLIA (GRAM) revealed a novel role for this 
gene in leaf development [40, 41]. GRAM is abaxially ex-
pressed and promotes lateral leaf growth and abaxial cell 
fate. However, GRAM also functions redundantly with the 
ubiquitously expressed PHAN to promote adaxial identity 
[40, 41]. In addition, GRAM has been shown to interact 
with adaxially localized STYLOSA (STY), a homolog of 
the Arabidopsis flowering regulator LEUNIG [41]. Interest-
ingly, the YAB homolog in maize has been detected only 
in the adaxial leaf domain [42], which is opposite to the 

localization of Arabidopsis and Antirrhinum YABs. The 
divergent YAB expression patterns in different species sug-
gest that YAB genes may serve as a polar responser, rather 
than a polar determinant. 

miRNA165/166 and tasiR-ARF as endogenous regu-
lators in modulating polarity controlling transcrip-
tion factors

Recent studies have uncovered that small RNAs, includ-
ing miR165, miR166 and tasiR-ARF, regulate several key 
leaf polarity transcription factors described above. miR165 
and miR166 differ by only one nucleotide, and have been 
found to share near-perfect complementarity with a part 
of the START domain of class III HD-ZIP genes [43, 44]. 
miR165/166 repress PHB/PHV/REV mainly through mRNA 
cleavage [9, 45], and also promote DNA methylation of the 
PHB and PHV loci [46], likely leading to transcriptional 
silencing of these genes. In Arabidopsis, maize and tobacco, 
nucleotide changes in the START domain of several class 
III HD-ZIP genes result in dominant mutations, due to a 
loss of miR165- or miR166-mediated regulation [2, 7, 
9-12]. These dominant alleles all lead to the development 
of adaxialized leaves with excessive accumulation of the 
corresponding class III HD-ZIP transcripts throughout the 
leaf after emergence of leaf primordia [7, 9-12].

Over-expression of MIR165a driven by the 35S pro-
moter does not perturb adaxial-abaxial polarity, in spite 
of reduced class III HD-ZIP transcript levels [47]. It is 
possible that spatial and temporal regulation of the class 
III HD-ZIP genes by miR165/166 is very critical, and the 
expression pattern between the 35S promoter and the native 
miR165/166 promoters may not be identical [48]. For ex-
ample, if the 35S::MIR165a construct yields fewer miRNA 
at the critical P2 leaf stage but produces more at later leaf 
developmental stages, the leaf adaxial-abaxial polarity will 
not be markedly affected. Consistent with this hypothesis, 
miR165 levels were elevated in PHB::MIR165 transgenic 
lines, while miR166 levels were elevated in a miR166g 
enhancer trap line [48, 49], and both led to perturbations 
of adaxial-abaxial leaf polarity. It is possible that the ad-
ditionally increased miR165 and miR166 in these lines 
are accumulated to the regions where PHB/PHV/REV are 
expressed, so that the leaf adaxial-abaxial polarity of these 
lines is severely affected.

Analyses of miRNA165/166 expression by in situ hy-
bridization have generated differing reports. In the embryo, 
miR166 (maybe including miR165) is initially detected in 
the abaxial domain, and then expands to the adaxial domain 
and cotyledon tips [49]. In leaf primordia, miR165 (maybe 
including miR166) has been reported to be detected either 
only in the abaxial leaf domain [50] or throughout the 
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entire leaf primordia [47]. Since several groups have suc-
cessfully utilized the promoter-reporter fusion method and 
a recently developed locked nucleic acid (LNA) method 
to characterize miRNA expression patterns [51-53], these 
two methods together may reveal the true miR165/166 
expression patterns in the future.

ta-siRNAs are 21- or 24-nucleotide regulatory RNAs, 
which were first discovered separately by two groups [54, 
55]. In Arabidopsis, there are at least five genes (TAS1a, 
1b, 1c, TAS2 and TAS3) that are transcribed to produce ta-
siRNAs via stepwise processes. ta-siRNAs act to repress 
cognate genes by a manner similar to miRNAs [54, 55]. To 
date, proteins identified to be involved directly in ta-siRNA 
production and activity include RDR6, DRB4, SGS3, 
DCL4 and AGO7 (also called ZIPPY) [54-57]. Plants with 
mutations in these genes all exhibit an accelerated vegeta-
tive phase change from juvenile to adult leaf [54, 57]. 

One ta-siRNA, tasiR-ARF (ta-siR1778 or ta-siR2142), 
which derives from the TAS3 transcript, was found to 
direct the degradation of ARF3 and ARF4 mRNA; and in 
the rdr6, sgs3, ago7 and dcl4 mutants, levels of ARF3 and 
ARF4 transcripts were both elevated [56, 58-60]. Although 
rdr6 exhibits only mild phenotypes, the mutation greatly 
enhances as1 and as2 phenotypes, producing severely 
abaxialized leaves [47]. Similarly, mutations of sgs3, dcl4 
or ago7 also enhance the as1/2 phenotypes, suggesting 
that the ta-siRNA biogenesis and action pathways are im-
portant for leaf patterning [60, 61], and that AS1-AS2 and 
TAS3 pathways may be partially functionally redundant. 
Interestingly, arf3 was able to partially suppress as1 ago7 
phenotypes, as revealed by the analysis of arf3 as1 ago7 
triple mutant [60], indicating that the as1 ago7 phenotypes 
are at least partially due to the increased ARF3 transcript 
level in the as1 background. TAS3 is expressed in the 
adaxial leaf domain, suggesting that TAS3 and its product 
tasiR-ARF regulate ARF3/4 in this region [60]. Transgenic 
plants producing ARF3 transcripts insensitive to tasiR-ARF 
resembled as2 mutant [58, 59]; however, whether ARF3/4 
affect AS1/2 expressions remains to be determined.

26S proteasome may target a regulator that promotes 
leaf abaxial identity

The involvement of the 26S proteasome in leaf adaxial-
abaxial polarity formation identity was first discovered 
by characterization of an as1/as2 enhancer mutation, ae3 
(as1/as2 enhancer3) [62]. The ae3 single mutant exhibits 
weak abnormalities in adaxial-abaxial leaf polarity, with 
only a few earlier appearing rosette leaves being radially 
symmetric. ae3 as2 double mutants exhibit very severe 
leaf phenotypes with most leaves lacking normal adaxial 
differentiation. AE3 was identified to encode a 26S protea-

some subunit, RPN8a.
The 26S proteasome is a highly conserved protein deg-

radation complex in eukaryotes, consisting of about 31 
subunits arranged into two subcomplexes: the 20S catalytic 
core particle (CP) and the 19S regulatory particle (RP) [63]. 
The CP can cleave peptide bonds, while the RP assists in 
recognizing and unfolding target substrates tagged with 
poly-ubiquitin chains, removing the chains, and in direct-
ing the unfolded polypeptides into the CP for degradation 
[63]. The RP can be further divided into two parts known 
as the base and the lid [64], and the RPN8a subunit that is 
disrupted in the ae3 mutant is located in the 19S lid.

In addition to the critical role of the 26S holoenzyme 
in the degradation of ubiquitinated proteins, the 19S RP is 
also known to have protein degradation-independent roles 
in regulating gene expression in yeast [65-67]. To examine 
whether the protein degradation or gene expression regu-
lation function of the 26S proteasome is involved in leaf 
polarity formation, Huang et al. analysed several double 
mutants by combining as2 with 26S proteasome subunit 
mutations from the 19S lid and base, and 20S core com-
plexes. All the double mutants exhibited comparable leaf 
phenotypes, with abaxialized leaves, although the sever-
ity of the phenotypes differed [62]. These results strongly 
suggest that the proteolytic function of the 26S proteasome 
is required for specifying leaf adaxial identity, possibly 
by targeting abaxial-promoting regulators or inhibitors of 
adaxial-promoting factors during leaf polarity formation. In 
the future, it will be important to incorporate knowledge of 
the role of the 26S proteasome into the known regulatory 
network by identifying targets that may participate in leaf 
polarity formation. 

The Sussex signal

Microsurgical and laser ablation experiments on iso-
lated incipient leaf primordia from the SAM have sug-
gested the existence of the Sussex signal, an adaxializing 
signal originating from the SAM [3-5]. The nature of the 
molecule serving as the Sussex signal, however, has long 
been debated in the field of leaf development. During the 
past several years, three types of molecules have been pro-
posed to be the Sussex signal candidates: (1) sterol/lipid, 
(2) miR165/166, and (3) tasiR-ARF. Because the START 
domain in PHB/PHV/REV appears capable of binding ste-
rol/lipid and these three proteins are expressed and function 
in the adaxial leaf domain to specify leaf adaxial identity, 
it was proposed that an as-yet unidentified sterol/lipid may 
act as the signaling molecule [7]. A specific amino-acid 
residue substitution in the START domain of PHB/PHV/
REV renders these proteins constitutively active, resulting 
in the formation of adaxialized leaves. 



 Cell Research | www.cell-research.com 

Gene regulations for leaf polarity formation
516
npg

A more recent experiment showed that transgenic plants 
carrying a miR165-resistant PHB, harboring an altered 
nucleotide but not amino-acid sequence within the START 
domain, resembled the phb dominant mutants [68]. These 
results indicate that the miRNA binding sequence is crucial 
for regulating PHB function. Since small RNAs are known 
to be able to move between cells [69, 70], and miR165/166 
and tasiR-ARF have been demonstrated to regulate leaf 
polarity-controlling transcription factors, they have been 
proposed as SAM-derived Sussex signal candidates [50, 
60]. However, miR165/166 and tasiR-ARF are produced 
by leaf primordia as well. For example, the primary 
miR165/166 (pri-miR165/166) has been detected in leaves 
[71, 72], while TAS3 transcripts are found in the adaxial 
domain of leaf primordia [60]. It seems unlikely that leaf 
primordia import small RNAs from the SAM while they 
themselves are able to produce these small RNAs.

Results from the miR165-resistant PHB experiment indi-
cated that the wild-type START domain protein could cause 
adaxialized leaf phenotypes if the PHB mRNA accumulates 
to a certain level. However, the possibility that sterol/lipid 
molecules serve as the Sussex signal cannot be ruled out. 
If the level of the hypothetic sterol/lipid from the SAM is 
not a limiting factor for PHB binding and its subsequent 
function, both the constitutively active PHB (in the case 
of the phb-d dominant mutant) and the over-accumulated 
PHB (in the case of the miR165-resistant transgenic plant) 
should lead to the same adaxialized leaves. In the future, 
new ideas and methods will be necessary in identifying the 
Sussex signal molecule(s). 

The regulatory network that modulates adaxial-ab-
axial leaf polarity

The establishment of adaxial-abaxial leaf polarity is a 
complex process involving many interactive pathways and 
regulations at different levels, including the transcriptional, 
post-transcriptional and post-translational levels. Among 
all components identified during leaf adaxial-abaxial po-
larity formation, transcription factors appear to be central 
to the polarity process. PHB/PHV/REV and KAN1/2/3 act 
antagonistically, and exhibit complementary expression 
domains in multiple tissues. Mutual suppression between 
PHB/PHV/REV and KAN1/2/3 should be very important in 
determining leaf polarity [9, 30, 32]. Similarly, the AS1-AS2 
and ARF3-ARF4 pathways likely antagonize each other, as 
over-expression of tasiR-ARF-insensitive ARF3 phenocop-
ies the as2 mutant [58], whereas over-expression of AS2 
partially phenocopies the arf3 arf4 double mutant [16].

In normal leaf development, post-transcriptional regula-
tion may provide a fine tuning for functions of the adaxial- 
and abaxial-promoting transcription factors. RDR6/SGS3/

DCL4/AGO7 related post-transcriptional gene silencing 
pathway is necessary for tasiR-ARF production, and this 
pathway together with the AS1/AS2 pathway are important 
in suppressing miR165/166 [47]. These two classes of 
small RNAs in turn negatively regulate PHB/PHV/REV 
and ARF3/ARF4 transcription factors, respectively. The 
regulation by which the adaxial- or abaxial-promoting 
transcription factors are controlled by small RNAs is very 
important, as alterations of these small RNA levels result in 
aberrant adaxial or abaxial polarity of leaves. The important 
role of small RNAs in leaf polarity has been highlighted 
by another layer of evidence. The Arabidopsis gene AR-
GONAUTE1 is known to participate in both miRNA and 
ta-siRNA biogenesis, and in the ago1 mutant both miRNA 
and ta-siRNA levels were dramatically reduced [55, 73]. 
Characterization of different ago1 mutant alleles revealed 
that both adaxial and abaxial leaf identities are abnormal 
[50, 73-75], reflecting that both adaxial- and abaxial-pro-
moting pathways are affected in these mutants. 

How the 26S proteasome regulates leaf polarity is not yet 
clear. The 26S proteasome may not be directly involved in 
small RNA biogenesis and action, because ae3 as2 double 
mutant leaves do not have markedly elevated levels of 
miR165/166, nor do they display a shortened vegetative 
phase [62]. Thus, a simple hypothesis is that the proteasome 
targets an abaxial fate-promoting protein. If this is true, 
the role of post-translational regulation is similar to that 
of post-transcriptional regulation, by which the spatial and 
temporal activities as well as the dose of polarity controlling 
transcription factors may be precisely balanced.

Perspectives

Although considerable progress has been made in elu-
cidating the regulatory network involved in the establish-
ment of adaxial-abaxial leaf polarity, new discoveries are 
always accompanied by new questions. How do polarity 
controlling transcription factors regulate their downstream 
targets and which genes are their targets? What is the true 
Sussex signal molecule? Numerous mutations have been 
identified with abaxialized-leaf phenotypes, but none have 
been shown to disrupt a pathway involved in the synthe-
sis of a particular molecule that may serve as the Sussex 
signal. The past few years have witnessed the utility of 
genetic approaches to dissect the complex network of leaf 
adaxial-abaxial polarity formation. In the future, forward 
genetics together with new methods will undoubtedly 
provide exciting new insights into this field. 
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