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ABSTRACT

Protein kinase RAF is strategically located in the
"Ras - MAP-kinase signal transduction pathway", a prin-
ciple system which transmits signals from growth factor
receptors to the nucleus, resulting in cell proliferation.
Growth factor responses are mediated in part by activa-
tion of Ras, which in turn activates RAF to phosphorylate
MEK, its downstream substrate.  MEK activates MAP-
kinase to influence nuclear events.  It is clear, however,
that a network of signals other than those carried by Ras
plays a role in RAF regulation. These orthogonal influ-
ences are mediated by: serine/threonine kinases, tyrosine
kinases, and protein - protein interactions. As a further
complication to the RAF network, three isoforms of RAF
have been established which have divergent N-terminal
regulatory domains. Whereas these divergent regulatory
domains implicate isoform-specific functions, no clear ev-
idence or hypothesis for distinct functions for individual
isoforms has been presented.  Recently, "isoform-specific
protein interactions" have been identified among numerous
proteins interacting with RAF. These studies may serve to
delineate independent functions for RAF isoforms.

INTRODUCTION

Since their discovery in the early 1980's, RAF proteins1 have fascinated signal
transduction experts and cell biologists. A number of reviews have dealt with var-
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ious aspects of RAF including structure, function, Ras binding and activation[1-5].
The field has grown rapidly in the past two years, and during this period over 250
publications have appeared with the word "RAF" in the title. This review will fo-
cus on controls over RAF activity mediated by protein - protein interactions and by
post-translational phosphorylation. The theme we will attempt to develop is that
RAF plays a central role uniquely situated at a crossroads of signal transduction.
An attempt to portray such an intricate and complex system will be made with the
use of various analogies intended to provoke clarity and perspective.

RAF is a key intermediate of the growth factor -Ras- MAP kinase pathway (Fig 1)
essential for cell proliferative responses. RAF isoforms are cytosolic proteins which
serve as serine/threonine kinases. A variety of growth hormones, upon binding to
their respective receptors, stimulate receptor dimerization and autophosphorylation
at key tyrosine residues. Phosphotyrosine groups on the cytoplasmic domain of the
receptor trigger formation of multi-component signal-transduction complexes which
include members of Grb and SOS protein families. The complexes subsequently ac-
tivate the small molecular weight GTPase Ras, by promoting the exchange of GDP
for GTP. GTP-bound Ras activates RAF and initiates the subsequent phosphory-
lation/activation cascade through MEK and MAP-kinase.  MAP-kinase phospho-
rylates nuclear transcription factors and thereby activates the expression of genes
necessary for cell division.

Historical  perspective  of the  RAF  family

The identification of a truncated RAF in murine sarcoma virus 3611 as an onco-
gene[6] provided a key insight into the importance of this protein. More recently,
antisense oligonucleotides specific to C-RAF isoform inhibited the proliferation of
transformed cells[7, 8] and of growth factor stimulated cells[9], re-enforcing the in-
fluence of this system on cell growth. Genetic[10] and biochemical[11] studies place
RAF in the Ras-MAP-kinase pathway between Ras and its downstream substrates
- the MEK family of protein kinases.

The RAF family consists of at least three isoforms: A-RAF, B-RAF and C-RAF.
Three isoforms of RAF were identified by cross hybridization[12] and enzymes from
numerous species have been cloned including C. elegans, chicken, mouse, rat, baboon
and human[13-15]. RAF-related pseudogenes exist in both human and baboon[12,
15-17]. The genes for RAF proteins are located on chromosomes: X, 7, and 3 (for
A-, B-, and C-RAF, respectively)[12, 16, 17]. Genomic sequences are available which
include information on promoter structure, introns, and exons (GenBank accession
numbers: L24038, X65187, SEG_ HUMRAF1).

1 RAF isoforms will be referred to as A-, B, and C-RAF (also referred to in the literature as Raf-
1 or Mif-1) and sequence numbers, unless stated otherwise, refer to the human C-RAF sequence
( Genbank #XO3484), historically, the most intensively studied isoform.
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Fig  1.  The  schematic  representation of Ras-RAF-MEK-MAPK signal transduction
pathway. The signaling through the pathway is initiated by binding dimeric
growth factor to corresponding growth factor receptor. Dimerization of the
receptor leads to its autuphosphorylation on Tyr residues. Phosphotyrosine
residues initiate the formation of the Grab-SOS signal transduction complex,
which eventually lead to exchange of GDP to GTP in small molecular weight
GTPase Ras. Ras-GTP molecule is capable of activating RAF, which triggers
the cascade of consecutive phosphorylation/activation events and eventually
lead to the phosphorylation and activation of the transcription factors. The
proteins from each step of the pathway have multiple isoforms which precise
functions are not understood.

An important issue is why has nature evolved three variations of this important
kinase? The amino acid sequence of the three isoforms are aligned in Fig 2a. The
C-terminal kinase domain is highly conserved among isoforms.  The N-terminal
regulatory domain is less conserved. Individual isoforms are highly conserved among
different species from chicken to human. In fact, the conservation of a particular
isoform between different species is higher than that between isoforms within a
single species (Tab 1). This information clearly suggests that distinct roles for the
individual RAF isoforms have evolved. Although information about RAF isoform
cellular localization, which will be discussed below, is provocative, our understanding
of the role of the individual isoforms remains unresolved.
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Fig 2.  A.  The sequence alignment of three RAF isoforms. Identical amino acids
are in red, conserved substitutions are in blue, non-conserved amino
acids are in black.  Note the that highest number of identical amino
acids are in the C-terminal catalytic region of RAF isoforms.

B.  The schematic representation of three RAF isoforms. The Cysteine rich
domain (CRD) is in purple, Ras binding domain (RBD) is in white, and
serine/threonine protein kinase catalytic domain is in red. The numbers
mark the beginning and the end of each domain in the isoform, and the
total number of amino acids in each RAF isoform. Also are shown: Thr
residue of the autophosphorylation site, ATP binding regions and the
key catalytic Lys in the kinase domains.

A-RAF and C-RAF mRNAs have been detected in most tissues[29].  B-RAF
isoform is predominantly expressed in adult mouse brain and testes. In addition, B-
RAF mRNA is expressed as four alternatively spliced messages in mouse brain[30].
Both A- and C-RAF can co-exist in a single cell. Rat smooth muscle A10 cells
contain both A- and C-RAF as judged both by Western and Northern analysis[9].
Treatment of these cells with antisense to either isoform resulted in a non-additive
decrease in cell proliferation[9].

All indications point to a dynamic regulation of RAF at the protein level as will
be outlined below. There are no reports concerning the regulation of RAF activity
at the level of protein expression or protein stability.  C-RAF protein half-life in
human coronary artery smooth muscle cells was reported to be 30 h[18]. C-RAF,

2 B .  Three RAF-Kinase lsoforms
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which is the most abundant RAF isoform, is a minor cellular component, estimated
by labeling and immunoprecipitation experiments to represent 0.001% of the total
cellular protein in CV1 kidney fibroblast cells[15].

Tab 1.    Similarity of RAF Proteins
            

Percent similarity accounts for conserved aminoacid substitutions within
RAF sequence. Percent of identical aminoacids is given in brackets.

Structure  of R AF

RAF can be pictured (Fig 2b) as a multi-domain protein containing a C-terminal
kinase and a N-terminal regulatory domain containing several sub-domains. Analy-
sis of the protein sequence2 reveals a consensus serine/threonine kinase domain (aa
347-613 in the C-RAF sequence), an ATP-binding motif (aa 355-363) and a cysteine-
rich domain (CRD, aa 139-184)3. A Ras-binding domain (RBD, aa 51-139) has been
documented (Avruch and Morrison have reviewed the complex information on Ras-
RAF interactions[3, 20]). High-resolution structure of the complex between RAF
and Rap1a, a small molecular weight GTPase homologous to Ras, has been re-
ported[21] (see also[22, 23]). Both the RBD and CRD participate in Ras binding.
 
2  A useful Website for obtaining protein structural information of this type is the ExPASy site at the
Geneva University Hospital and the University of Geneva h"ttp://expasy.hcuge.ch/www/expasy-
top.html". ". Domain searches can be done using p"fscan" at h"ttp://expasy.hcuge.ch/sprot/prosite.html".
3  This cysteine-rich domain is different from cysteine-rich domains present in extracellular domains
of receptor proteins (such as Prosite T "NFR NGFR" or I"ntegrin Beta"), or to the cysteine-rich do-
mains involved in binding DNA which are also referred to as zinc fingers (such as Prosite G"ATA ZN
FINGER")[19]. The p"fscan" program run on C-RAF defines aa 138-184 as a P"KC-C1 domain',
aa 139-184 as a D" AG_PE _"BIND" binding domain, aa 152-184 as a Z" F-Ring finger

 Percent  similarity (Identity)

 Three  human  isoforms Full sequence   Regulatory  domain        Kinase domain

  A-RAF/C-RAF 75 (62)  64 (48)  88 (77)

  A-RAF/B-RAF 74 (60)  62 (45)  87 (76)

  B-RAF/C-RAF 75 (59)  62 (41)  91 (80)

  Across Species             Full Sequence        Regulatory   Domain      Kinase Domain

 A-R AF  Human / Rat 97 (95)  96 (92)  98 (99)

 B-R AF  Human / Chicken 97 (95)  95 (91)      100 (100)

 C- RAF  Human / Rat 99 (98)  98 (98)    100 (99)
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Ras and Rap1a may compete for activation/inactivation of RAF by binding to the
same binding site[24].

The cysteine-rich domain

The 45 amino acid (aa) region of C-RAF (aa 139-184) containing six cysteines
and two histidines is referred to as a cysteine-rich domain (CRD) or a zinc finger[20]
reviewed by Klug and Schwabe[19]. RAF CRD binds two zinc atoms[23]. This
motif is similar to the diacylglycerol-binding N-terminal domain of protein kinase C
(PKC). However, unlike PKC, RAF does not bind phorbol esters[25] (See Footnote
3).

A growing body of evidence indicates that the RAF CRD is a major region for
protein interaction and therefore regulation of RAF. Mutations of the CRD which af-
fect RAF biological activities have been reported[20, 26]. The RAF CRD has been
shown to bind phospholipids[27], a property that may be important during RAF
translocation to the plasma membrane. The CRDs, analogous to the RAF CRD,
are present in a variety of other kinases including KSR and 11 PKC isoforms[28],
suggesting that the regulation of kinase activity through CRD is widespread. We
will return to this aspect below.

Kinase  substrates

The most established RAF substrates are the MEK family of protein kinases.
MEK 1 kinase is phosphorylated in vitro by both C-RAF and B-RAF at Ser 218[31,
32].  MEK binds the catalytic domains of C-RAF and B-RAF, as demonstrated
either with the yeast two-hybrid assay or with immunoprecipitation[33].  A-RAF
was shown to bind and activate MEK1, but not MEK2[34]. IκB protein, a negative
regulator of the NF-κB transcription factor, is phosphorylated by C-RAF in vitro
leading to an increase in NF-κB transcriptional activity[35]. A systematic study
of RAF-kinase substrate requirements or a detailed enzyme kinetic analysis of this
system has not been performed. This lack of information is due to the difficulty in
the purification of active RAF and in part due to the fact that signal transduction
components exist naturally as multiprotein complexes.

Phosphorylation and post-translational control of RAF

Phosphorylation of RAF represents a primary mechanism by which various lat-
eral systems influence RAF activity. This area has been one of intense study. Both
serine/threonine and tyrosine phosphorylation have been reported (Fig 3, Tab 2).
Phosphorylation can result both in negative or positive effects on RAF catalytic
activity. As detailed in the Tab 2, different methods have contributed to this in-
formation, some of which distinguish modifications that effect enzyme activity and
others that pinpoint changes correlated with mitogen stimulation.
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Fig 3.  The schematic representation of the most studied C-RAF isoform with dif-
ferent phosphorylation sites. Table 2 shows the kinases and conditions which
cause C-RAF phosphorylation.

Tab 2.    List of known phosphorylation sites of RAF isoforms

Sf9 is a baculovirus insect cell expression system. CAPK - ceramide-activated kinase

C-R AF  site

Ser 43

Ser 259, 261

Thr  268, 269

Ser 338,  339

Tyr  340, 341

Ser 497,  499

Ser 621

{B-RAF } Thr
372

-SEQUENCE-

(Isoform )

-QRRASDD-
(B=C  not  A)

-QR ST STPN-
( A=B=C)

-HMVSTTLP V-
( A=C  not  B)

-RDSSY Y W E-
( A=B=C)

-RDSS Y Y W E-
(A=C not  B)

-RWSGSQQ V-
(B=C  not  A)

-NRSASEP-
( A=B=C)

-VHINTIE-

Effec t on

A ctivity

negative

positive

positive

positive

positive

positive

negative

Reference

[36, 37,
39]

[37, 39,
43,  67]

[39, 68]

[42]

[40]

[43]

[39, 69]

[70]

Cell  type detected

quiescent 3T3, HFF

A431, PDGF-activated
3T3, HFF, (mitogen +)

Sf9*

COS-7 with ras-V12

Sf9 + v-src

quiescent 3T3

Sf9*

in vitro

(Involved  Kinase)

PKA

PKCα
PK A

C-R AF autophos-
phoryla tion, CAPK

PK Cα

PK A

B-R AF  autophos-
phorylation

CRD=Cysteine-Rich domain (139-184) RBD=Ras-Binding Domain(55-131)   APS=Autophosphorylation site

C-Raf Domain Structure and Posphorylation Sites
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Ser 43 can be phosphorylated in vitro by protein kinase A (PKA) or under condi-
tions of cAMP increase, both of which represent a negative regulatory influence[36-
38]. Ser 43, Ser 259, and Ser 621 were found to be phosphorylated in insect Sf9 cells
co-expressing activated PDGF receptors and C-RAF[39].  Tyr 340 and 341 were
phosphorylated in insect cells when C-RAF was over-expressed together with the
Src-family tyrosine kinases or with the JAK-2 kinase[40, 41]. Ser 338 and 339 were
found to be phosphorylated in COS-7 cells when C-RAF was over-expressed with
an oncogenic form of Ras[42]. The ability of PKC to phosphorylate RAF at Ser 259
and Ser 499 is well documented[43]. C-RAF autophosphorylates at Thr 268/269[39].

Many RAF isoforms have been cloned and expressed by the pioneering work from
Ulf Rapp and colleagues. Importantly, expression of highly-active enzyme requires
post-translational modification in the form of serine/threonine and tyrosine phos-
phorylations[39]. Co-expression of RAF with both a tyrosine kinase such as Src and
with the Ras protein leads to maximal enzyme activity in a baculovirus expression
system[44, 45].  Activation of RAF by phosphorylation allows for numerous and
complex lateral influences on the RAF pathway. Like a river with numerous trib-
utaries converging in a dynamic fashion, cell regulation through RAF is extensive
and changeable.

RAF protein-protein interactions

RAF protein-protein interactions have been extensively studied by the yeast two-
hybrid screening method[46], by immunoprecipitation[15, 47], and by binding tech-
niques[48, 49]. Tab 3 lists sixteen proteins shown to interact with RAF.

RAF - Ras

GTPases of the Ras family are the most well-studied proteins which interact with
RAF. RAF has higher affinity for GTP-Ras over GDP- Ras[27]. Over-expression of
Ras activates RAF, and over-expression of the N-terminal domain of RAF blocks the
Ras transforming ability[50]. Several Ras-related small molecular weight GTPases
can interact with C-RAF including: Ha-Ras[46, 51], Rap-1A[52], R-Ras [53], Rhe-
b[54].

Ras is normally farnesylated and palmitoylated in vivo at C-terminal cysteine
residues[55, 56]. These modifications result in the trans-localization of Ras to the
membrane. A proposed function for Ras is to target RAF to the membrane via
this mechanism. Mutant RAF proteins, encoding C-terminal farnesylation signals
to mimic the effect of Ras, were shown to be isoprenylated. These constructs were
preferentially membrane localized and resulted in cell transformation.

RAF - 14-3-3 protein interaction

RAF has been shown to interact with 14-3-3 proteins[57]. These 14-3-3 proteins
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Tab 3.    List of Published Proteins Interacting with RAF

IP = immunoprecipitation, Two-hybrid = the yeast Two- Hybrid analysis, "in vitro "
refers to various other biochemical techniques such as "Far Western Analysis" or Affinity
Chromotography methods.

are abundant cytosolic proteins which appear to act as co-factors to a variety of
cytosolic proteins (reviewed in[58]). The interaction of RAF with 14-3-3 proteins is
complex. The binding of a 14-3-3 protein to RAF is influenced by RAF phosphory-

Protein name

Ha-Ras, R-ras,

Rap1A, Rheb

14-3-3β，ζ，θ，h

β -subunit of trimeric

G-protein

BAG1

Bcl2

Fyn

βsubunit of Casein

kinase2

M E K 1 , M EK 2

c-Myc

IkB

Heat Shock Proteins

hsp90 + p50

Reference

[27, 54]

[59, 71, 72]

[73]

[74]

[75]

[76]

[64, 65]

[71, 77]

[78]

[35]

[15, 79, 80]

Method

in  vitro,  two- hybrid

IP , two-hybrid,

in  vitro

two-hybrid

two-hybrid, in  vitro,

IP

two-hybrid , in vitro

two-hybrid

two-hybrid, IP

in  vitro

in  vitro,  two-hybrid

IP

RAF isoform
interaction domain

C-RAF RBD domain, 55-131

C-RAF CRD, 139-185

C-RAF CRD, 139-185

B-RAF  N-termnus, 1-443

C-RAF

C-R AF kinase domain,

303-648

C-RAF kinase domain,

303-648

A-R AF kinase domain,

255-587

C-R AF kinase domain,

303-648

B-R AF kinase domain,

333-767

C-RAF

C -R AF kinase domain,

303-648

C-Raf

Swiss Prot /
Gen Bank
accession number

P01112, P10301,

P10113, S68419

P31946,  P29312,

P27348, Q04917

Q99933

P10415

P06241

P13862

Q13233,  P36507

P01106

P25963

P08238
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lation on Ser259[3, 59, 60]. This serine is contained within a -RxSxSpxP- sequence
which has been shown to be the 14-3-3 binding motif[60].  Conversely, phospho-
rylation of 14-3-3 protein by casein kinase I abolish 14-3-3 binding to RAF[61].
Over-expression of 14-3-3 protein activates signaling through RAF[62, 63]. How-
ever, recent publications argue that 14-3-3 proteins inhibit RAF activity in vivo,
because a mutated RAF, that is unable to bind 14-3-3 protein, has enhanced trans-
forming activity[26]. Reconciliation of these diverse observations and of the multiple
contact regions is an ongoing effort.

Other RAF - protein interactions

Six proteins have been described to interact with the RAF catalytic domain (Tab
3), of the which only IκB are phosphorylated by RAF. In the two-hybrid assay,
βsubunit of casein kinase II binds to the C-terminal domain of A-RAF but not
C-RAF[64, 65]. The functional significance of this interaction is not understood.

We have performed extensive yeast two-hybrid screens with both A-RAF and
C-RAF in search of isoform-specific protein interactions. These studies identified 20
RAF-interacting proteins using the poorly conserved N-terminal regulatory domain
of RAF as the bait (aa 1-314 of A-RAF and aa 1-353 of C-RAF)[28]. Several novel
RAF-interacting proteins were identified and sequenced. Among these is a novel
protein kinase referred to as hA38, a kinase which binds non-selectively to all three
RAF isoforms. In addition, several isoform-specific RAF binding partners were iden-
tified. These include two mitochondrial membrane transport proteins which bind
specifically to A-RAF. Subsequently, A-RAF was localized inside purified rat liver
mitochondria by Western analysis[66]. This finding has led to the hypothesis that A-
RAF isoform is selectively located in rat liver mitochondria where it may coordinate
mitochondrial replication, energy production, or potentially apoptosis[66].

All 20 proteins we identified as binding to RAF N-terminal domain interacted
with the RAF CRD. The fact that the CRD was sufficient for their interaction sug-
gested that the CRD is a principle site for RAF protein-protein interactions. Closer
inspection of the amino acid sequence of the CRD region from the three RAF iso-
forms (Fig 2a) reveals that this sequence is highly conserved. Of the 45 residues only
12 amino acids are different among the isoforms, however, seven of these changes
result in changes of charge. Because we have determined that the CRD is sufficient
to interact with all of the RAF binding partners[28], we infer that these specific
residues play a key role in specifying isoform-specific interactions. The numerous
proteins reported to interact with RAF suggest a busy and dynamic intersection
with competition from multiple directions.

Cellular functions of the  RAF network

An expanding list of receptor signals has been shown to activate RAF (Tab 4).
Although a general list of this type probably contains unestablished "cause and ef-
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fect" relationships, it attests to the broad influence of the RAF network. Included
in this coverage are receptors for growth factors, for cytokines and for seven-trans-
membrane spanning receptors. The variety of signals which impinge upon RAF re-
iterates the fundamental importance of this protein to signal transduction. Because
the decision for a cell to divide is a fundamentally profound one, a sophisticated
integration of information and therefore control occurs in the cytosol at the level of
RAF, prior to signal transmission into the nucleus.

Tab 4.    Examples of cellular responses

IP = immunoprecipitation, Two-hybrid = the yeast Two- Hybrid analy-
sis, "in vitro" refers to various other biochemical techniques such as "Far
Western Analysis" or Affinity Chromotography methods.

Input or receptor

Gamma irradiation

PACAP-like neuropeptide

12-O-tetradecanoylphorbol-13 -acetate  (TPA)

Interleukin-5

Insulin-like  growth factor I

Ca2+mobilizer thapsigargin

Trimeric  G- Protein

Bone morphogenetic protein 4

Bile acid secretion by tauroursodeoxycholaterat

Angiotensin II and PDGF

Fibroblast-derived growth factor

Integrin mediated cell attachment

Prostaglandin F2-α

β -interferon,oncostatin M

Lactosylceramide

Prolactin

αl-adrenergic receptor agonist

Bombesin and neuromedin B

ICAM-1

Gonadotropin-releasing hormone

G-CSF

TGFβ1

Osmolarity

Erythropoietin and inositolphosphate-glycan

Cell type

breast cancer cells

Drosophila

Madin-Darby canine kidney cells,3T3

eosinophils

Balb/c, rat cardiac myocytes

Balb/c

HEK 293 cells

Xenopus oocytes

liver

smooth muscle

rat hippocampalneurons

arat uterine

HeLa cells

smooth muscle cell proliferation

mammary cells

rat ventricular myocytes

Rat-1 cells

B cell lymphoma line

αT3-1 cell line

myeloid NFS-60 cells

rat hepatic stellate cells

C6 glioma cells

erythroid progenitor cells

Reference

[81]

[82]

[83, 84]

[85]

[86, 87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]
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Summary and conclusions

This review has focused on the expanding number of complexities to the RAF
network, particularly at the level of protein - protein interactions and at RAF phos-
phorylation by lateral systems. In view of these complexities, the importance of
RAF in integrating information from numerous systems is obvious. More effort is
needed to fully define the spectrum of proteins which interact directly with RAF
and to delineate the unique functions of RAF isoforms.
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